-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGenerateSyntheticCellSequence.m
163 lines (133 loc) · 5.38 KB
/
GenerateSyntheticCellSequence.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function [I_N,BW,I,I_DIC,B,N_static,N_dyn] = GenerateSyntheticCellSequence(param)
% Abstract:
% This program will generate synthetic cells and the respective ground
% truth data.
%
% Parameter Inputs:
% param
% .imsize N variable to generate N x N image (assumed square)
% .NbrFrames Number of frames. If 1, then static image.
% .epsf_M M variable to generate DIC imaging blurring M x M kernel
% .epsf_shear_angle The DIC imaging blurring shear angle
% .epsf_sigma The DIC imaging blurring shear weighting
% .poiss_lambda Dynamic noise poisson distribution lambda
% .poiss_amp Dynamic noise poisson distribution amplitude
% .gauss_mu Dynamic noise gaussian distribution mean
% .gauss_sigma Dynamic noise gaussian distribution std dev
% .gauss_amp Dynamic noise gaussian distribution amplitude
% .SNR SNR level (in dB) of noise
%
% Outputs:
% I_N Sequence of noisy DIC images (static & dynamic noise)
% BW Sequence of ground truth masks
% I Sequence of noiseless cell surface in the pixel-space
% I_DIC Sequence of noiseless DIC images
% B Single image of Bias
% N_static Single image of static noise
% N_dyn Sequence of dynamic noise
%
% Note: To generate noisy DIC image with bias, use: I_N + B;
%
% The data was generated using the framework described in:
% Cell Membrane Tracking in Living Brain Tissue using Differential
% Interference Contrast Microscopy
% J.Lee, I.Kolb, C.R.Forest, C.J.Rozell
% IEEE Transactions in Image Processing
%% Load pre-learned data
% Bias data, Radially Averaged PSD data
load('BiasStaticNoiseData64.mat');
% Load PCA cell-shape data
load('Cell_PCA_data.mat');
%% Load parameters
if nargin == 1
imsize = param.imsize;
NbrFrames = param.NbrFrames;
epsf_M = param.epsf_M;
epsf_shear_angle = param.epsf_shear_angle;
epsf_sigma = param.epsf_sigma;
PixelspaceParam = param.PixelspaceParam;
poiss_lambda = param.poiss_lambda;
poiss_amp = param.poiss_amp;
gauss_mu = param.gauss_mu;
gauss_sigma = param.gauss_sigma;
gauss_amp = param.gauss_amp;
SNR = param.SNR;
else
% Set default parameters (as in the paper)
imsize = 64;
NbrFrames = 100;
% Effective Point Spread Function Parameters
epsf_M = 5;
epsf_shear_angle = 225;
epsf_sigma = 0.5;
% Cell Surface Parameters
PixelspaceParam.ImSize = imsize;
PixelspaceParam.RotationAngle = rand*360; % ~Uniform(0,360)
PixelspaceParam.ScalingRatio = 0.7 + rand*0.1; % ~Uniform(0.7,0.8)
PixelspaceParam.Method = 'fractal'; % sumofgauss perlin fractal
PixelspaceParam.Persistence = sqrt(2); % perlin fractal
PixelspaceParam.NbrFrames = NbrFrames;
PixelspaceParam.Motion = 'shrink-expand'; % asympotic shrink-expand expand-shrink
% Dynamic (Sensor) Noise Distributions Parameters
poiss_lambda = 1e-10;
poiss_amp = 20.6;
gauss_mu = 0;
gauss_sigma = 0.0181;
gauss_amp = 0.98;
SNR = -1;
end
%% Step #1: Generate Random Cell
[x_syn_data] = GenerateRandomCellShape(PCA_data,size(PCA_data.b,1),1);
%% Step #2: Generate Cell Surface
d = size(x_syn_data,1);
% Extract data points
x = x_syn_data(1:d/2,1);
y = x_syn_data(d/2+1:end,1);
% Obtain image using coordinates
[I,BW] = EmbedCoordToImageSpace(x,y,PixelspaceParam);
%% Step #3: Convolution against DIC Imaging Kernel
EPSF = DIC_EPSF(epsf_M,epsf_shear_angle,epsf_sigma);
I_DIC = zeros(imsize,imsize,NbrFrames);
for f = 1:NbrFrames
I_DIC(:,:,f) = conv2(I(:,:,f),EPSF,'same');
end
%% Step #4: Extract Random Bias (assumed static)
% The bias is a component that we linear which can be added at any point in
% the simulation. We provide this as a separate component B.
rand_idx = rand*size(Bias,3);
B = Bias(:,:,ceil(rand_idx));
%% Step #5: Generate Static Noise (Cellular noise)
rand_idx = ceil(rand*size(RAPSD,2));
% Obtain Static Noise
[G] = iRadialAvgPSD(RAPSD(:,rand_idx));
N_syn_phase = exp( 1i * 2 * pi * rand(size(G)) ); % use amplitude but randomize phase
N_syn_spectrum = sqrt(2) * G .* N_syn_phase;
N_static = real(ifft2(N_syn_spectrum));
N_dyn = zeros(imsize,imsize,NbrFrames);
N_syn = zeros(imsize,imsize,NbrFrames);
I_N = zeros(imsize,imsize,NbrFrames);
signal_energy = nan(NbrFrames,1);
noise_energy = nan(NbrFrames,1);
for f = 1 : NbrFrames
% Generate Dynamic Noise
poiss_pd = makedist( 'Poisson' , poiss_lambda );
gauss_pd = makedist( 'Normal' , gauss_mu , gauss_sigma );
N_dyn = poiss_amp * random(poiss_pd,size(I)) + ...
gauss_amp * random(gauss_pd,size(I));
N_dyn(:,:,f) = N_dyn(1:imsize,1:imsize);
% Noise signal
N_syn(:,:,f) = N_static + N_dyn(:,:,f);
%N_syn(:,:,f) = N_dyn(:,:,f); % Only dynamic noise (useful for analysis)
% First Determine the average SNR across all of the frames
% Note: the noise energy is the measure of the biased variance.
% Matlab uses: sum(abs(signal(:)).^2)/length(signal(:));
signal_energy(f) = norm(I_DIC(:,:,f),'fro')^2; % add square for power!
noise_energy(f) = norm(N_syn(:,:,f),'fro')^2;
end
% Use unbiased estimate for the overall noise
% Scale the original signal by the average energy
I = 10^(SNR/10) * (sum(noise_energy)/sum(signal_energy)) * I;
I_DIC = 10^(SNR/10) * (sum(noise_energy)/sum(signal_energy)) * I_DIC;
% Add signal to noise
I_N = I_DIC + N_syn;
end