|
| 1 | +import sys |
| 2 | +sys.path.append("..") |
| 3 | + |
| 4 | +from aoclib import util |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +# Expand the universe, then find the length of the shortest path |
| 8 | +# between every pair of galaxies. What is the sum of these lengths? |
| 9 | +def solve_11(data): |
| 10 | + # Expand the universe... |
| 11 | + universe = np.char.array(data) |
| 12 | + # ...by inserting empty lines |
| 13 | + inserted = 0 |
| 14 | + for i, galaxycount in enumerate(universe.count('#')): |
| 15 | + if galaxycount == 0: |
| 16 | + universe = np.insert(universe, i+inserted, '.' * len(universe[i])) |
| 17 | + inserted += 1 |
| 18 | + |
| 19 | + # ...and columns |
| 20 | + universe = np.rot90(universe.view('U1').reshape(universe.size,-1)) |
| 21 | + inserted = 0 |
| 22 | + for i, line in enumerate(universe): |
| 23 | + chr,counts = np.unique(line, return_counts=True) |
| 24 | + counts = dict(zip(chr, counts)) |
| 25 | + if not '#' in counts: |
| 26 | + # The axis thing because we now have a 2D array of char... |
| 27 | + universe = np.insert(universe,i+inserted, line, axis=0) |
| 28 | + inserted += 1 |
| 29 | + |
| 30 | + tmp = np.where(universe == '#') |
| 31 | + positions = list(zip(tmp[0],tmp[1])) |
| 32 | + |
| 33 | + distances = np.zeros((len(positions),len(positions)),dtype=np.int32) |
| 34 | + # quadratic time, but is there any other way? |
| 35 | + for i in range(0,len(positions)): |
| 36 | + for j in range(i+1,len(positions)): |
| 37 | + # Manhattan distance |
| 38 | + distances[i][j] = abs(positions[i][0] - positions[j][0]) + abs(positions[i][1] - positions[j][1]) |
| 39 | + |
| 40 | + |
| 41 | + print(positions) |
| 42 | + print(distances) |
| 43 | + |
| 44 | + print(universe) |
| 45 | + print(universe.shape) |
| 46 | + return sum(sum(distances)) |
| 47 | + |
| 48 | +# As the first part, but now expand empty rows/columns by one million... |
| 49 | +def solve_11b(data, factor=1000000): |
| 50 | + # Expand the universe... |
| 51 | + universe = np.char.array(data) |
| 52 | + # ...by inserting empty lines |
| 53 | + inserted = 0 |
| 54 | + for i, galaxycount in enumerate(universe.count('#')): |
| 55 | + if galaxycount == 0: |
| 56 | + universe = np.insert(universe, i+inserted, '.' * len(universe[i])) |
| 57 | + inserted += 1 |
| 58 | + |
| 59 | + # ...and columns |
| 60 | + universe = np.rot90(universe.view('U1').reshape(universe.size,-1)) |
| 61 | + inserted = 0 |
| 62 | + for i, line in enumerate(universe): |
| 63 | + chr,counts = np.unique(line, return_counts=True) |
| 64 | + counts = dict(zip(chr, counts)) |
| 65 | + if not '#' in counts: |
| 66 | + # The axis thing because we now have a 2D array of char... |
| 67 | + universe = np.insert(universe,i+inserted, line, axis=0) |
| 68 | + inserted += 1 |
| 69 | + |
| 70 | + tmp = np.where(universe == '#') |
| 71 | + positions = list(zip(tmp[0],tmp[1])) |
| 72 | + |
| 73 | + distances = np.zeros((len(positions),len(positions)),dtype=np.int32) |
| 74 | + # quadratic time, but is there any other way? |
| 75 | + for i in range(0,len(positions)): |
| 76 | + for j in range(i+1,len(positions)): |
| 77 | + # Manhattan distance |
| 78 | + distances[i][j] = abs(positions[i][0] - positions[j][0]) + abs(positions[i][1] - positions[j][1]) |
| 79 | + |
| 80 | + |
| 81 | + print(positions) |
| 82 | + print(distances) |
| 83 | + |
| 84 | + print(universe) |
| 85 | + print(universe.shape) |
| 86 | + return sum(sum(distances)) |
| 87 | + |
| 88 | + |
| 89 | +if __name__ == '__main__': |
| 90 | + data = util.getInput("../inputs/11.txt") |
| 91 | + print( solve_11(data) ) |
| 92 | + print( solve_11b(data) ) |
0 commit comments