-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcalcgraph.m
130 lines (105 loc) · 4.69 KB
/
calcgraph.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
function calcgraph(basename,varargin)
% Copyright (C) 2018 Srivas Chennu, University of Kent and University of Cambrige,
% srivas@gmail.com
%
%
% Binarise connectivity matrices and calculate graph theoretic metrics
% capturing micro-, meso- and macro-scale properties of the matrices
% modelled as networks. Accepts optional input argument, heuristic,
% specifiying the number of times to calculate and average over heuristic
% graph-theory metrics like modularity and derivatives like participation
% coefficient. Default value of heuristic is 50.
%
% For more, see [1,2]
%
% [1] Chennu S, Annen J, Wannez S, Thibaut A, Chatelle C, Cassol H, et al.
% Brain networks predict metabolism, diagnosis and prognosis at the bedside
% in disorders of consciousness. Brain. 2017;140(8):2120-32.
% [2] Chennu S, Finoia P, Kamau E, Allanson J, Williams GB, Monti MM, et al.
% Spectral signatures of reorganised brain networks in disorders of consciousness.
% PLOS Computational Biology. 2014;10(10):e1003887.
%
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
loadpaths
param = finputcheck(varargin, {
'heuristic', 'integer', [], 50; ...
});
% proportional network density thresholds at which to threshold, binarise and
% calculate graph theory metrics. Starts at 1 = keep all network edges, and
% steps in decrements .025 to 0.1 = keep only 10% of strongest edges
tvals = 1:-0.025:0.1;
savename = sprintf('%s/%s_mohawk.mat',filepath,basename);
load(savename,'matrix','chanlocs');
load(sprintf('sortedlocs_%d.mat',length(chanlocs)),'chandist');
chandist = chandist / max(chandist(:));
graphdata{1,1} = 'clustering';
graphdata{2,1} = 'characteristic path length';
graphdata{3,1} = 'global efficiency';
graphdata{4,1} = 'modularity';
graphdata{5,1} = 'modules';
graphdata{6,1} = 'centrality';
graphdata{7,1} = 'modular span';
graphdata{8,1} = 'participation coefficient';
graphdata{9,1} = 'degree';
graphdata{10,1} = 'mutual information';
fprintf('Processing data set %s\n',basename);
for f = 1:size(matrix,1)
fprintf('Frequency band %d\n',f);
cohmat = squeeze(matrix(f,:,:));
cohmat(isnan(cohmat)) = 0;
cohmat = abs(cohmat);
for thresh = 1:length(tvals)
bincoh = double(threshold_proportional(cohmat,tvals(thresh)) ~= 0);
allcc(thresh,:) = clustering_coef_bu(bincoh);
allcp(thresh) = charpath(distance_bin(bincoh),0,0);
alleff(thresh) = efficiency_bin(bincoh);
allbet(thresh,:) = betweenness_bin(bincoh);
alldeg(thresh,:) = degrees_und(bincoh);
for i = 1:param.heuristic
[Ci, allQ(thresh,i)] = community_louvain(bincoh);
allCi(thresh,i,:) = Ci;
modspan = zeros(1,max(Ci));
for m = 1:max(Ci)
if sum(Ci == m) > 1
distmat = chandist(Ci == m,Ci == m) .* bincoh(Ci == m,Ci == m);
distmat = nonzeros(triu(distmat,1));
modspan(m) = sum(distmat)/sum(Ci == m);
end
end
allms(thresh,i) = max(nonzeros(modspan));
allpc(thresh,i,:) = participation_coef(bincoh,Ci);
end
%clustering coeffcient
graphdata{1,2}(f,thresh,1:length(chanlocs)) = allcc(thresh,:);
%characteristic path length
graphdata{2,2}(f,thresh) = allcp(thresh);
%global efficiency
graphdata{3,2}(f,thresh) = alleff(thresh);
% modularity
graphdata{4,2}(f,thresh) = mean(allQ(thresh,:));
% community structure
graphdata{5,2}(f,thresh,1:length(chanlocs)) = squeeze(allCi(thresh,1,:));
%betweenness centrality
graphdata{6,2}(f,thresh,1:length(chanlocs)) = allbet(thresh,:);
%modular span (for definition, see [2])
graphdata{7,2}(f,thresh) = mean(allms(thresh,:));
%participation coefficient
graphdata{8,2}(f,thresh,1:length(chanlocs)) = mean(squeeze(allpc(thresh,:,:)));
%degree
graphdata{9,2}(f,thresh,1:length(chanlocs)) = alldeg(thresh,:);
end
end
fprintf('\n');
save(savename, 'graphdata', 'tvals', '-append');