-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlasma.py
448 lines (369 loc) · 27.7 KB
/
Plasma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# Plasma Class - Create a plasma and calculate the relative parameters
import numpy as np
from scipy.interpolate import CubicSpline, interp1d
import scipy.constants as cons
from MagPy.Ionisation import IaeaTable, IaeaTableMod
class Plasma:
def __init__(self, A, ANum, ne, Te, Ti, V, B, Z = None, gamma = None):
'''
Initialise a Plasma Object given the following parameters:
Args:
example:
---------------------------------------------------------------------------------------
al_flow = {'A':27, 'ANum': 14, 'ne':1e18, 'Te': Te, 'Ti': Ti, 'V':4e6, 'B': 5, 'Z': Z, gamma: 5/3}
al=Plasma(**al_flow)
---------------------------------------------------------------------------------------
A: ion mass in nucleon masses
ANum: Atomic Number
ne: Electron Density in cm^-3
Te electron temperature in eV
V: velocity in cm/s
B: Magnetic Field [Tesla]
Z: if not provided use z_model based on Te and Ne (specify 'lte' or 'ss' to use the custom tables)
gamma: polytropic gamma value, if not specified gamma = 1
'''
self.A = A # Atomic mass weight [gr/mol]
self.ANum = ANum # Atomic Number
self.ne = ne # Electron Density [cm^-3]
self.Te = Te # Electron Temperature
self.Ti = Ti # Ion Temperature [eV]
self.V = V # Bulk Velocity [cm/s]
self.B = B # Magnetic Field [Tesla T]
if gamma is None:
self.gamma = 1
else:
self.gamma = gamma
if Z is None:
# Estimate Ionisation Charge State - Z - from Tabled Values
Z_mod = IaeaTable(self.ANum)
if np.isscalar(self.Te) == True:
self.Z = Z_mod.model(self.Te, self.ne) # Charge State for a given Te
else:
self.Z = []
for i in range(len(self.Te)):
z = Z_mod.model(self.Te[i], self.ne[i])
self.Z.extend(z)
self.Z = np.array(self.Z)
elif Z == 'lte':
Z_mod = IaeaTableMod(self.ANum, 'lte')
if np.isscalar(self.Te) == True:
self.Z = Z_mod.model(self.Te, self.ne) # Charge State for a given Te
else:
self.Z = []
for i in range(len(self.Te)):
z = Z_mod.model(self.Te[i], self.ne[i])
self.Z.extend(z)
self.Z = np.array(self.Z)
elif Z == 'ss':
Z_mod = IaeaTableMod(self.ANum, 'ss')
if np.isscalar(self.Te) == True:
self.Z = Z_mod.model(self.Te, self.ne) # Charge State for a given Te
else:
self.Z = []
for i in range(len(self.Te)):
z = Z_mod.model(self.Te[i], self.ne[i])
self.Z.extend(z)
self.Z = np.array(self.Z)
else:
self.Z = Z
# -----------------------------------------------------------------
# Density
self.density = self.ne * self.A * cons.m_p * 1e3 / self.Z # Mass Density [gr/cm3]
# Ion density
self.ni = self.ne/self.Z # Ion Density [cm^-3]
# Calculate Coulomb Log
self.CoulombLog()
# Parameters
self.speed()
self.frequency()
self.lengthScale()
self.viscosity()
self.resistivity()
self.pressure()
self.timing()
self.dimensionless()
self.thermal_conductivityEH()
# self.thermalconductivity()
def CoulombLog(self):
"""
method to calculate Coulomb Log:
- Formulas taken from NRL formulary pg 34
"""
m_e = cons.m_e # Electron Mass [Kg]
m_i = self.A*cons.m_u
X = self.Ti * (m_e/m_i)
Y = 10*self.Z**2
if np.isscalar(X) == False:
log_ei = []
for i in range(len(X)):
if ((self.Te[i] > X[i]) and (self.Te[i] < Y[i])):
collog = 23-np.log(self.ne[i]**0.5*self.Z[i]*self.Te[i]**-1.5)
log_ei.append(collog)
elif (X[i] < Y[i]) and (Y[i] < self.Te[i]):
collog = 24-np.log(self.ne[i]**0.5*self.Te[i]**-1)
log_ei.append(collog)
elif (self.Te[i] < X[i]*self.Z[i]):
collog = 30-np.log(self.ni[i]**0.5*self.Z[i]**2*self.Te[i]**-1.5/self.A[i])
log_ei.append(collog)
self.col_log_ei = np.array(log_ei)
else:
if ((self.Te > X) and (self.Te < Y)):
self.col_log_ei = 23-np.log(self.ne**0.5*self.Z*self.Te**-1.5) # see NRL formulary pg 34
elif (X < Y) and (Y < self.Te):
self.col_log_ei = 24-np.log(self.ne**0.5*self.Te**-1)
elif (self.Te < X*self.Z):
self.col_log_ei = 30-np.log(self.ni**0.5*self.Z**2*self.Te**-1.5/self.A)
def speed(self):
"""
Method to calculate main Speeds:
- Electron Thermal speed
- Ions Thermal speed
- Sound Speed
- Alfven Speed
[Using SI units, Kelvin, m, Kg, s]
"""
# Scientific Constant
m_e = cons.m_e # Electron Mass [Kg]
m_i = self.A*cons.m_u # Ion Mass [Kg]
e = cons.e # Elemental Charge [C]
mu_0 = cons.mu_0 # Vacuum Permeability [N A^-2]
epsilon_0 = cons.epsilon_0 # Vacuum Permittivity [F m^-1]
kb = cons.k # Boltzmann Constant [J K^-1]
c = cons.c # Light Speed [m s^-1]
T_e = self.Te*e/kb # Electron Temperature [K]
T_i = self.Ti*e/kb # Ion Temperature [K]
n_e = self.ne * 1e6 # Electron Density, SI [m^-3]
n_i = n_e/self.Z # Ion Density, SI [m^-3]
self.V_te = np.sqrt(kb*T_e/m_e) # Electron Thermal Speed [m s^-1]
self.V_ti = np.sqrt(kb*T_i/m_i) # Ion Thermal Speed [m s^-1]
self.V_S = np.sqrt(self.gamma * kb*(self.Z*T_e+T_i)/m_i) # Sound Speed [m s^-1]
self.V_A = np.sqrt(self.B**2/(mu_0*n_i*m_i)) # Alfven Speed [m s^-1]
def frequency(self):
"""
Method to calculate main plasma frequencies
[Using SI units, Kelvin, m, Kg, s]
"""
m_e = cons.m_e # Electron Mass [Kg]
m_i = self.A*cons.m_u # Ion Mass [Kg]
e = cons.e # Elemental Charge [C]
epsilon_0 = cons.epsilon_0 # Vacuum Permittivity [F m^-1]
n_e = self.ne * 1e6 # Electron Density, SI [m^-3]
n_i = n_e/self.Z # Ion Density, SI [m^-3]
self.om_ce = e*self.B/m_e # Electron Cyclotron frequency [rad s^-1]
self.om_ci = self.Z*e*self.B/m_i # Ion Cyclotron frequency [rad s^-1]
self.om_pe = np.sqrt(e**2*n_e/(epsilon_0*m_e)) # Electron Plasma Frequency [rad s^-1]
self.om_pi = np.sqrt(self.Z**2*e**2*n_i/(epsilon_0*m_i)) # Ion Plasma Frequency [rad s^-1]
# Collision Rate
"""Using CGS Units, eV, cm, g, s"""
self.nu_ei = 2.91e-6*self.Z*self.ne*self.col_log_ei*self.Te**-1.5 # Collision Frequency: Electrons - Ions [1/s] ref. NRL FUNDAMENTAL PLASMA PARAMETERS chapter does not include Z - refer to Braginskii
self.nu_ie = 4.80e-8*self.Z**4*self.A**-0.5*self.ni*self.col_log_ei*self.Ti**-1.5 # Collision Frequency: Ions - Electrons [1/s] taken from near Maxwellian formulas
def lengthScale(self):
"""
Method to calculate main lenght scales
[Using SI units Kelvin, m, Kg, s]
"""
e = cons.e # Elemental Charge [C]
epsilon_0 = cons.epsilon_0 # Vacuum Permittivity [F m^-1]
kb = cons.k # Boltzmann Constant [J K^-1]
c = cons.c # Light Speed [m s^-1]
T_e = self.Te*e/kb # electron Temperature, kelvin [K]
T_i = self.Ti*e/kb # ion Temperature, kelvin [K]
n_e = self.ne * 1e6 # Electron Density, SI [m^-3]
self.la_de = np.sqrt(epsilon_0*kb*T_e/(n_e*e**2)) # Debye length [m]
self.delta_i = c/self.om_pi # ion inertial length (ion skin depth) [m]
self.delta_e = c/self.om_pe # electron inertial length (electron skin depth) [m]
if np.nonzero(self.B):
self.rho_i = self.V_ti/self.om_ci # Ion Larmor Radius [m]
self.rho_e = self.V_te/self.om_ce # Electron Larmor Radius [m]
self.rho_e *= 1e2
self.rho_i *= 1e2
else:
self.rho_e = np.nan
self.rho_i = np.nan
self.mfp_e = self.V_te/self.nu_ei # thermal electron mean-free-path [m]
self.mfp_i = self.V_ti/self.nu_ie # thermal Ion mean-free-path
self.mfp_ii = self.V * 1e-2/self.nu_ie # velocity ion-ion mean-free-path (shock thickness)
self.mfp_ee = self.V * 1e-2/self.nu_ei # velocity electron mean-free-path (shock thickness)
""" Convert to CGS units """
self.la_de *= 1e2 # [m] --> [cm]
self.delta_e *= 1e2 # [m] --> [cm]
self.delta_i *= 1e2 # [m] --> [cm]
self.mfp_i *= 1e2 # [m] --> [cm]
self.mfp_e *= 1e2 # [m] --> [cm]
self.mfp_ii *= 1e2 # [m] --> [cm]
self.mfp_ee *= 1e2 # [m] --> [cm]
def viscosity(self):
# Viscosity
"""
Method to calculate Plasma Viscosity (Ryutov 99)
Using CGS Units, eV, cm, g, s
"""
self.visc = 2e19*(self.Ti**2.5)/(self.col_log_ei*self.A**0.5*self.Z**3*self.ne) # [cm^2 s^-1]
# self.visc = 5e-6 * self.A**0.5 * self.Ti**2.5 / (self.Z**4 * self.density) # [cm^2 s^-1] Rayleigh-Taylor in finaly structured medium, Ryuton 1996
self.Lvisc = self.visc/self.V # Viscous Length Scale [cm]
def resistivity(self):
"""
Method to calculate plasma resistivity and relative resistive scale
[Using SI units Kelvin, m, Kg, s]
"""
m_e = cons.m_e # Electron Mass [Kg]
e = cons.e # Elemental Charge [C]
mu_0 = cons.mu_0 # Vacuum Permeability [N A^-2]
n_e = self.ne * 1e6 # Electron Density [m-3]
self.sigma = n_e*e**2/(m_e*self.nu_ei) # Electric Conductivity [s kg^-3 m^-3 C^-3]
self.Dm = 1/(self.sigma*mu_0) # Magnetic Diffusivity [m^2 s^-1]
self.eta = self.Dm*mu_0 # Electric Resistivity [s kg^-3 m^-3 C^-3]^-1
""" Convert to CGS units """
self.Dm = self.Dm*1e4 # [m^2 s^-1] --> [cm^2 s^-1]
self.Leta = self.Dm / self.V # Electric Resistive scale [cm]
def pressure(self):
"""
Method to calculate Pressures:
- Magnetic Pressure
- Thermal Pressure
- Ram Pressure
[Using SI units Kelvin, m, Kg, s]
"""
kb = cons.k # Boltzmann Constant [J K^-1]
mu_0 = cons.mu_0 # Vacuum Permeability [N A^-2]
m_i = self.A*cons.m_u # Ion Mass [Kg]
e = cons.e # Elemental Charge [C]
n_e = self.ne * 1e6 # Electron Density [m^-3]
n_i = n_e/self.Z # Ion Density, SI [m^-3]
V = self.V*1e-2 # Bulk Speed [cm/s] --> [m/s]
T_e = self.Te*e/kb # Electron Temperature [K]
T_i = self.Ti*e/kb # Ion Temperature [K]
self.P_B = self.B**2/(2*mu_0) # Magnetic Pressure [N m^-2]
self.P_th = n_i*kb*(self.Z*T_e+T_i) # Thermal Pressure [N m^-2]
self.P_ram = n_i*m_i*V**2 # Ram Pressure [N m^-2]
def dimensionless(self, l = 1):
"""
Calculate main dimensionless parameters given a characteristic spatial length
input:
- l: Characteristic Spatial Length
[CGS]
"""
self.l = l # Length [cm]
self.HallNumber = self.delta_i / (self.l*1e-2) # Hall Number
self.Re = self.l*self.V / self.visc # Reynolds Number
self.Re_m = self.l*self.V / self.Dm # Magnetic Reynolds Number
if np.nonzero(self.B):
self.beta_th = self.P_th / self.P_B # Thermal Beta
self.beta_ram = self.P_ram / self.P_B # Dynamic Beta
self.M_A = self.V*1e-2 / self.V_A # Alvenic Mach Number
else:
self.M_A = np.nan
self.beta_ram = np.nan
self.beta_th = np.nan
self.M_S = self.V*1e-2 / self.V_S # Sonic Mach Number
self.M_SA = self.V*1e-2 / np.sqrt(self.V_A**2 + self.V_S**2) # Magnitosonic Mach Number
self.omega_t_e = self.om_ce / self.nu_ei # omega tau electron
self.omega_t_i = self.om_ci / self.nu_ie # omega tau ions
def timing(self):
m_e = cons.m_e * 1e3 # Electron Mass [g]
m_i = self.A*cons.m_u *1e3 # Ion Mass [g]
e = cons.e # Elemental Charge [C]
# equilibration time
self.ni_ei = 1.8e-19 * (m_e * m_i)**0.5*self.Z**2*self.ne*self.col_log_ei / (m_e*self.Ti + m_i*self.Te)**1.5 # [s^-1]
self.ni_ie = 1.8e-19 * (m_i * m_e)**0.5*self.Z**2*self.ni*self.col_log_ei / (m_i*self.Te + m_e*self.Ti)**1.5 # [s^-1]
self.tau_eq_ei = 1/self.ni_ei # Second [s]
self.tau_eq_ie = 1/self.ni_ie # Second [s]
#collisional time ions and electrons
self.tau_ei = 1/self.nu_ei
self.tau_ie = 1/self.nu_ie
def thermal_conductivityEH(self):
# Thermal conductivity - Epperlein_Haines 1985 (More accurate) - only electrons
# Coefficients in the following table were computed assuming fully ionised plasma so (Atomic Number == Z_bar)
# NB In our case, it might be more appropriate to use z_bar instead of atomic number!
def near_ANum(Anum, Anum_arr):
idx = np.argmin(np.abs(Anum_arr - Anum))
# print('Calculating transport using Anum = {}'.format(Anum_arr[idx]))
return idx
## Heat transport
Anum_arr = np.array([1,2,3,4,5,6,7,8,10,12,14,60, 100])
g0 = np.array([3.2, 4.93, 6.12, 7.00, 7.68,8.23, 8.69, 9.07, 9.67, 10.1, 10.5, 12.7, 13.58])
gp0 = np.array([6.2, 9.3, 10.2, 9.1, 8.6, 8.6, 8.8, 7.9, 7.4, 7.3, 7.1, 6.4, 6.21])
gp1 = np.array([4.7, 4.0, 3.7, 3.6, 3.5, 3.5, 3.5, 3.4, 3.4, 3.4, 3.4, 3.27, 3.25])
cp0 = np.array([1.9, 1.9, 1.7, 1.3, 1.1, 1.0, 1.0, 0.9, 0.7, 0.7, 0.7, 0.5, 0.5])
cp1 = np.array([2.3, 3.8, 4.8, 4.6, 4.6, 4.8, 5.2, 4.7, 4.6, 4.7, 4.6, 4.7, 4.8])
cp2 = np.array([5.4, 7.8, 8.9, 8.8, 8.8, 9.0, 9.2, 8.8, 8.7, 8.7, 8.7, 8.5, 8.5])
def kc_par(Anum, Anum_arr):
idx = near_ANum(Anum, Anum_arr)
return g0[idx]
def kc_perp(chi, Anum, Anum_arr):
idx = near_ANum(Anum, Anum_arr)
return (gp1[idx] * chi + gp0[idx])/(chi**3 + cp2[idx] * chi**2 + cp1[idx] * chi +cp0[idx])
"""
This function is in MKS.
"""
m_e = cons.m_e # Electron Mass [Kg]
e = cons.e # Elemental Charge [C]
kb = cons.k # Boltzmann Constant [J K^-1]
T_e = self.Te*e/kb # Electron Temperature [K]
n_e = self.ne * 1e6 # Electron Density [m^-3]
Anum = self.ANum # Atomic mass
chi = self.omega_t_e # omega tau electron
self.k_conv = kb * n_e * T_e/(m_e * self.nu_ei) # NRL p 37, 1/(m s)
self.kc_perp = kc_perp(chi, self.Z, Anum_arr)
self.kc_par = kc_par(self.Z, Anum_arr)
self.par_to_perp = self.kc_par/self.kc_perp
self.k_perp = self.kc_perp * self.k_conv
self.k_par = self.kc_par * self.k_conv
self.C_p = 5/2*(n_e * (1 + 1/self.Z)) # heat capacity of electrons and ions
self.Dth_perp = self.k_perp/self.C_p # m^2/s
self.Dth_par = self.k_par/self.C_p # m^2/s
def thermalconductivity(self):
# Coefficient Braginskii
m_e = cons.m_e * 1e3 # Electron Mass [g]
m_i = self.A*cons.m_u *1e3 # Ion Mass [g]
e = cons.e # Elemental Charge [C]
def ThermalCoefficient(Z):
## function retrieved from spreadsheet Thermal Conductivity
par = 3.2132*Z**0.5697
perp = 4.6211*Z**-0.191
return par, perp
a_par, a_perp = ThermalCoefficient(self.Z)
self.xi_i_par = 1.6e-12 * a_par * (self.ni * self.Ti * self.tau_ie / m_i)
self.Dth_i_par = self.xi_i_par / self.ne
if np.nonzero(self.B) is False:
self.xi_i_perp = np.nan
self.Dth_i_perp = np.nan
else:
self.xi_i_perp = 1.6e-12 * a_perp * (self.ni * self.Ti / ( self.om_ci**2 * self.tau_ie * m_i))
self.Dth_i_perp = self.xi_i_perp / self.ne
self.xi_e_par = 1.6e-12 * a_par * (self.ne * self.Te * self.tau_ei / m_e)
self.Dth_e_par = self.xi_e_par / self.ne
if np.nonzero(self.B) is False:
self.xi_e_perp = np.nan
self.Dth_e_perp = np.nan
else:
self.xi_e_perp = 1.6e-12 * a_perp * (self.ne * self.Te / ( self.om_ce**2 * self.tau_ei * m_e * 1e3 ))
self.Dth_e_perp = self.xi_e_perp / self.ne
def params(self):
#useful function tht really should be built in....rounds to n sig figs
round_to_n = lambda x, n: round(x, -int(np.floor(np.log10(np.abs(x)))) + (n - 1))
# Create print list
electrondensity = 'Electron Density = ' + str(np.format_float_scientific(self.ne, precision = 1, exp_digits=2)) + ' [cm^-3]'
ioninertiallength = 'Ion Inertial Length = ' + str(np.format_float_scientific(self.delta_i, precision = 1, exp_digits=2)) + ' [cm]'
ionlarmorradius = 'Ion Larmor Radius = ' + str(np.format_float_scientific(self.rho_i, precision = 1, exp_digits=2)) + ' [cm]'
ionplasmafrequency = 'Ion Plasma Frequency = ' + str(np.format_float_scientific(self.om_pi, precision = 1, exp_digits=2)) + ' [rad s^-1]'
ionmeanfreepath = 'Ion Mean-Free-Path = ' + str(np.format_float_scientific(self.mfp_i, precision = 1, exp_digits=2)) + ' [cm]'
elemeanfreepath = 'Electron Mean-Free-Path = ' + str(np.format_float_scientific(self.mfp_e, precision = 1, exp_digits=2)) + ' [cm]'
collog = 'Coulomb Logaritm = ' + str(np.format_float_scientific(self.col_log_ei, precision = 1, exp_digits=2))
magneticdiff = 'Magnetic Diffusivity = ' + str(np.format_float_scientific(self.Dm, precision = 1, exp_digits=2)) + ' [cm^2/s]'
resistivescale = 'Resistive Scale = ' + str(np.format_float_scientific(self.Leta, precision = 1, exp_digits=2)) + ' [cm]'
sonicmachnumber = 'Sonic Mach Number = ' + str(np.format_float_scientific(self.M_S, precision = 1, exp_digits=2))
magneticmachnumber = 'Alfven Mach Number = ' + str(np.format_float_scientific(self.M_A, precision = 1, exp_digits=2))
msonicmachnumber = 'Magnetosonic Mach Number = ' + str(np.format_float_scientific(self.M_SA, precision = 1, exp_digits=2))
omegatau_i = 'Magnatisation Ions (omega_tau_i) = ' + str(np.format_float_scientific(self.omega_t_i, precision = 1, exp_digits=2))
omegatau_e = 'Magnatisation Electrons (omega_tau_e) = ' + str(np.format_float_scientific(self.omega_t_e, precision = 1, exp_digits=2))
viscositykinem = 'kinematic viscosity = ' + str(np.format_float_scientific(self.visc, precision = 1, exp_digits=2))
reynoldsnumber = 'Reynolds Number = ' + str(np.format_float_scientific(self.Re, precision = 1, exp_digits=2))
mareynoldsnumber = 'Magnetic Reynolds Number = ' + str(np.format_float_scientific(self.Re_m, precision = 1, exp_digits=2))
mabeta = 'Thermal Beta = ' + str(np.format_float_scientific(self.beta_th, precision = 1, exp_digits=2))
rambeta = 'Dynamic Beta = ' + str(np.format_float_scientific(self.beta_ram, precision = 1, exp_digits=2))
electrontemperature = 'Electron Temperature = ' + str(np.format_float_scientific(self.Te, precision = 1, exp_digits=2)) + ' [eV]'
iontemperature = 'Ion Temperature = ' + str(np.format_float_scientific(self.Ti, precision = 1, exp_digits=2)) + ' [eV]'
chargestate = 'Charge State - Z = ' + str(self.Z)
txtstr = electrondensity + '\n' + ioninertiallength + '\n' + ionlarmorradius + '\n' + ionmeanfreepath + '\n' + elemeanfreepath + '\n' + collog + '\n' + ionplasmafrequency + '\n' + resistivescale + '\n' + sonicmachnumber + '\n' + magneticmachnumber + '\n' + msonicmachnumber + '\n' + viscositykinem + '\n' + omegatau_i + '\n' + omegatau_e + '\n' + reynoldsnumber + '\n' + mareynoldsnumber + '\n' + mabeta + '\n' + rambeta + '\n' + electrontemperature + '\n' + iontemperature + '\n' + chargestate + '\n' + magneticdiff
print(txtstr)