-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathzeek_anomaly_detector.py
executable file
·220 lines (175 loc) · 7.61 KB
/
zeek_anomaly_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3
# This file is part of the Stratosphere Linux IPS
# See the file 'LICENSE' for copying permission.
# Authors:
# - Sebastian Garcia, eldraco@gmail.com,
# sebastian.garcia@agents.fel.cvut.cz
# - Veronica Valeros, vero.valeros@gmail.com
"""
Zeek Anomaly Detector by the Stratosphere Laboratory
"""
import argparse
import pandas as pd
from pyod.models.pca import PCA
# from sklearn.model_selection import train_test_split
# from pyod.models import lof
# from pyod.models.abod import ABOD
# from pyod.models.cblof import CBLOF
# from pyod.models.lof import LOF
# from pyod.models.loci import LOCI
# from pyod.models.lscp import LSCP
# from pyod.models.mcd import MCD
# from pyod.models.ocsvm import OCSVM
# from pyod.models.sod import SOD
# from pyod.models.so_gaal import SO_GAAL # Needs keras
# from pyod.models.sos import SOS # Needs keras
# from pyod.models.xgbod import XGBOD # Needs keras
# from pyod.models.knn import KNN # kNN detector
def detect(file, amountanom, dumptocsv):
"""
Function to apply a very simple anomaly detector
amountanom: The top number of anomalies we want to print
"""
# Create a Pandas dataframe from the conn.log
bro_df = pd.read_csv(file, sep="\t", comment='#',
names=['ts', 'uid', 'id.orig_h', 'id.orig_p',
'id.resp_h', 'id.resp_p', 'proto', 'service',
'duration', 'orig_bytes', 'resp_bytes',
'conn_state', 'local_orig', 'local_resp',
'missed_bytes', 'history', 'orig_pkts',
'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes',
'tunnel_parents'])
# In case you need a label, due to some models being able to work in a
# semisupervized mode, then put it here. For now everything is
# 'normal', but we are not using this for detection
bro_df['label'] = 'normal'
# Replace the rows without data (with '-') with 0.
# Even though this may add a bias in the algorithms,
# is better than not using the lines.
# Also fill the no values with 0
# Finally put a type to each column
bro_df.replace({'orig_bytes': '-'}, '0', inplace=True)
bro_df['orig_bytes'] = pd.to_numeric(bro_df['orig_bytes'], errors='coerce')
bro_df['orig_bytes'] = bro_df['orig_bytes'].fillna(0).astype('int64')
bro_df.replace({'resp_bytes': '-'}, '0', inplace=True)
bro_df['resp_bytes'] = pd.to_numeric(bro_df['resp_bytes'], errors='coerce')
bro_df['resp_bytes'] = bro_df['resp_bytes'].fillna(0).astype('int64')
bro_df.replace({'resp_pkts': '-'}, '0', inplace=True)
bro_df['resp_pkts'] = pd.to_numeric(bro_df['resp_pkts'], errors='coerce')
bro_df['resp_pkts'] = bro_df['resp_pkts'].fillna(0).astype('int64')
bro_df.replace({'orig_ip_bytes': '-'}, '0', inplace=True)
bro_df['orig_ip_bytes'] = pd.to_numeric(bro_df['orig_ip_bytes'], errors='coerce')
bro_df['orig_ip_bytes'] = bro_df['orig_ip_bytes'].fillna(0).astype('int64')
bro_df.replace({'resp_ip_bytes': '-'}, '0', inplace=True)
bro_df['resp_ip_bytes'] = pd.to_numeric(bro_df['resp_ip_bytes'], errors='coerce')
bro_df['resp_ip_bytes'] = bro_df['resp_ip_bytes'].fillna(0).astype('int64')
bro_df.replace({'duration': '-'}, '0', inplace=True)
bro_df['duration'] = pd.to_numeric(bro_df['duration'], errors='coerce')
bro_df['duration'] = bro_df['duration'].fillna(0).astype('float64')
# Save dataframe to disk as CSV
if dumptocsv != "None":
bro_df.to_csv(dumptocsv)
# Add the columns from the log file that we know are numbers.
# This is only for conn.log files.
x_train = bro_df[['duration', 'orig_bytes', 'id.resp_p',
'resp_bytes', 'orig_ip_bytes', 'resp_pkts',
'resp_ip_bytes']]
# Our y is the label. But we are not using it now.
# y = bro_df.label
# The x_test is where we are going to search for anomalies.
# In our case, its the same set of data than x_train.
x_test = x_train
#################
# Select a model from below
# ABOD class for Angle-base Outlier Detection. For an observation, the
# variance of its weighted cosine scores to all neighbors could be
# viewed as the outlying score.
# clf = ABOD()
# LOF
# clf = LOF()
# CBLOF
# clf = CBLOF()
# LOCI
# clf = LOCI()
# LSCP
# clf = LSCP()
# MCD
# clf = MCD()
# OCSVM
# clf = OCSVM()
# PCA. Good and fast!
clf = PCA()
# SOD
# clf = SOD()
# SO_GAAL
# clf = SO_GALL()
# SOS
# clf = SOS()
# XGBOD
# clf = XGBOD()
# KNN
# Good results but slow
# clf = KNN()
# clf = KNN(n_neighbors=10)
#################
# extract the value of dataframe to matrix
x_train = x_train.values
# Fit the model to the train data
clf.fit(x_train)
# get the prediction on the test data
y_test_pred = clf.predict(x_test) # outlier labels (0 or 1)
y_test_scores = clf.decision_function(x_test) # outlier scores
# Convert the ndarrays of scores and predictions to pandas series
scores_series = pd.Series(y_test_scores)
pred_series = pd.Series(y_test_pred)
# Now use the series to add a new column to the X test
x_test.insert(loc=len(x_test.columns),column='score', value=scores_series.values)
x_test.insert(loc=len(x_test.columns),column='pred', value=pred_series.values)
# Add the score to the bro_df also. So we can show it at the end
bro_df['score'] = x_test['score']
# Keep the positive predictions only.
# That is, keep only what we predict is an anomaly.
x_test_predicted = x_test[x_test.pred == 1]
# Keep the top X amount of anomalies
top10 = x_test_predicted.sort_values(by='score',
ascending=False).iloc[:amountanom]
# Print the results
# Find the predicted anomalies in the original bro dataframe,
# where the rest of the data is
df_to_print = bro_df.iloc[top10.index]
print('\nFlows of the top anomalies')
# Only print some columns, not all, so its easier to read.
df_to_print = df_to_print.drop(['conn_state', 'history', 'local_orig',
'local_resp', 'missed_bytes', 'ts',
'tunnel_parents', 'uid', 'label'], axis=1)
print(df_to_print)
if __name__ == '__main__':
print('Zeek Anomaly Detector: a simple anomaly detector \
for Zeek conn.log files.')
print('Author: Sebastian Garcia (eldraco@gmail.com)')
print(' Veronica Valeros (vero.valeros@gmail.com)')
# Parse the parameters
parser = argparse.ArgumentParser()
parser.add_argument('-v', '--verbose',
help='Amount of verbosity.',
action='store',
required=False,
type=int)
parser.add_argument('-e', '--debug',
help='Amount of debugging.',
action='store',
required=False,
type=int)
parser.add_argument('-f', '--file',
help='Zeek conn.log path.',
required=True)
parser.add_argument('-a', '--amountanom',
help='Amount of anomalies to show.',
required=False,
default=10,
type=int)
parser.add_argument('-D', '--dumptocsv',
help='Dump the conn.log DataFrame to a csv file',
required=False)
args = parser.parse_args()
detect(args.file, args.amountanom, args.dumptocsv)