-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathim2tensor_mean_removal.m
44 lines (37 loc) · 1.03 KB
/
im2tensor_mean_removal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function im_ten = im2tensor_mean_removal(varargin)
%
NumInput = length(varargin);
InImg = varargin{1};
patchsize12 = varargin{2};
mean_removal= true;
z = size(InImg,3);
im = cell(z,1);
if NumInput == 2
for i = 1:z
iim = im2colstep(InImg(:,:,i),patchsize12);
if(mean_removal)
im{i} = bsxfun(@minus, iim, mean(iim))';
else
im{i} = iim';
end
% iim = bsxfun(@minus, iim, mean(iim));
% im{i} = bsxfun(@minus, iim, mean(iim,2))';
end
else
for i = 1:z
iim = im2colstep(InImg(:,:,i),patchsize12,varargin{3});
if(mean_removal)
im{i} = bsxfun(@minus, iim, mean(iim))';
else
im{i} = iim';
end
% iim = bsxfun(@minus, iim, mean(iim));
% im{i} = bsxfun(@minus, iim, mean(iim,2))';
end
end
im = [im{:}]';
[~, num_patches] = size(im);
im_ten = tenzeros([num_patches,patchsize12(1), patchsize12(2)]);
for i=1:num_patches
im_ten(i,:,:)=reshape(im(:,i),patchsize12(2), patchsize12(2));
end