forked from arrayfire/arrayfire-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage.py
895 lines (673 loc) · 24.6 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
#######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################
"""
Image processing functions for arrayfire.
"""
from .library import *
from .array import *
from .data import constant
import os
def gradient(image):
"""
Find the horizontal and vertical gradients.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
Returns
---------
(dx, dy) : Tuple of af.Array.
- `dx` containing the horizontal gradients of `image`.
- `dy` containing the vertical gradients of `image`.
"""
dx = Array()
dy = Array()
safe_call(backend.get().af_gradient(ct.pointer(dx.arr), ct.pointer(dy.arr), image.arr))
return dx, dy
def load_image(file_name, is_color=False):
"""
Load an image on the disk as an array.
Parameters
----------
file_name: str
- Full path of the file name on disk.
is_color : optional: bool. default: False.
- Specifies if the image is loaded as 1 channel (if False) or 3 channel image (if True).
Returns
-------
image - af.Array
A 2 dimensional (1 channel) or 3 dimensional (3 channel) array containing the image.
"""
assert(os.path.isfile(file_name))
image = Array()
safe_call(backend.get().af_load_image(ct.pointer(image.arr),
ct.c_char_p(file_name.encode('ascii')), is_color))
return image
def save_image(image, file_name):
"""
Save an array as an image on the disk.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image.
file_name: str
- Full path of the file name on the disk.
"""
assert(isinstance(file_name, str))
safe_call(backend.get().af_save_image(ct.c_char_p(file_name.encode('ascii')), image.arr))
return image
def resize(image, scale=None, odim0=None, odim1=None, method=INTERP.NEAREST):
"""
Resize an image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
scale : optional: scalar. default: None.
- Scale factor for the image resizing.
odim0 : optional: int. default: None.
- Size of the first dimension of the output.
odim1 : optional: int. default: None.
- Size of the second dimension of the output.
method : optional: af.INTERP. default: af.INTERP.NEAREST.
- Interpolation method used for resizing.
Returns
---------
out : af.Array
- Output image after resizing.
Note
-----
- If `scale` is None, `odim0` and `odim1` need to be specified.
- If `scale` is not None, `odim0` and `odim1` are ignored.
"""
if (scale is None):
assert(odim0 is not None)
assert(odim1 is not None)
else:
idims = image.dims()
odim0 = int(scale * idims[0])
odim1 = int(scale * idims[1])
output = Array()
safe_call(backend.get().af_resize(ct.pointer(output.arr),
image.arr, ct.c_longlong(odim0),
ct.c_longlong(odim1), method.value))
return output
def transform(image, trans_mat, odim0 = 0, odim1 = 0, method=INTERP.NEAREST, is_inverse=True):
"""
Transform an image using a transformation matrix.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
trans_mat : af.Array
- A 2 D floating point arrayfire array of size [3, 2].
odim0 : optional: int. default: 0.
- Size of the first dimension of the output.
odim1 : optional: int. default: 0.
- Size of the second dimension of the output.
method : optional: af.INTERP. default: af.INTERP.NEAREST.
- Interpolation method used for transformation.
is_inverse : optional: bool. default: True.
- Specifies if the inverse transform is applied.
Returns
---------
out : af.Array
- Output image after transformation.
Note
-----
- If `odim0` and `odim` are 0, the output dimensions are automatically calculated by the function.
"""
output = Array()
safe_call(backend.get().af_transform(ct.pointer(output.arr),
image.arr, trans_mat.arr,
ct.c_longlong(odim0), ct.c_longlong(odim1),
method.value, is_inverse))
return output
def rotate(image, theta, is_crop = True, method = INTERP.NEAREST):
"""
Rotate an image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
theta : scalar
- The angle to rotate in radians.
is_crop : optional: bool. default: True.
- Specifies if the output should be cropped to the input size.
method : optional: af.INTERP. default: af.INTERP.NEAREST.
- Interpolation method used for rotating.
Returns
---------
out : af.Array
- Output image after rotating.
"""
output = Array()
safe_call(backend.get().af_rotate(ct.pointer(output.arr), image.arr,
ct.c_double(theta), is_crop, method.value))
return output
def translate(image, trans0, trans1, odim0 = 0, odim1 = 0, method = INTERP.NEAREST):
"""
Translate an image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
trans0: int.
- Translation along first dimension in pixels.
trans1: int.
- Translation along second dimension in pixels.
odim0 : optional: int. default: 0.
- Size of the first dimension of the output.
odim1 : optional: int. default: 0.
- Size of the second dimension of the output.
method : optional: af.INTERP. default: af.INTERP.NEAREST.
- Interpolation method used for translation.
Returns
---------
out : af.Array
- Output image after translation.
Note
-----
- If `odim0` and `odim` are 0, the output dimensions are automatically calculated by the function.
"""
output = Array()
safe_call(backend.get().af_translate(ct.pointer(output.arr),
image.arr, trans0, trans1,
ct.c_longlong(odim0), ct.c_longlong(odim1), method.value))
return output
def scale(image, scale0, scale1, odim0 = 0, odim1 = 0, method = INTERP.NEAREST):
"""
Scale an image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
scale0 : scalar.
- Scale factor for the first dimension.
scale1 : scalar.
- Scale factor for the second dimension.
odim0 : optional: int. default: None.
- Size of the first dimension of the output.
odim1 : optional: int. default: None.
- Size of the second dimension of the output.
method : optional: af.INTERP. default: af.INTERP.NEAREST.
- Interpolation method used for resizing.
Returns
---------
out : af.Array
- Output image after scaling.
Note
-----
- If `odim0` and `odim` are 0, the output dimensions are automatically calculated by the function.
"""
output = Array()
safe_call(backend.get().af_scale(ct.pointer(output.arr),
image.arr, ct.c_double(scale0), ct.c_double(scale1),
ct.c_longlong(odim0), ct.c_longlong(odim1), method.value))
return output
def skew(image, skew0, skew1, odim0 = 0, odim1 = 0, method = INTERP.NEAREST, is_inverse=True):
"""
Skew an image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
skew0 : scalar.
- Skew factor for the first dimension.
skew1 : scalar.
- Skew factor for the second dimension.
odim0 : optional: int. default: None.
- Size of the first dimension of the output.
odim1 : optional: int. default: None.
- Size of the second dimension of the output.
method : optional: af.INTERP. default: af.INTERP.NEAREST.
- Interpolation method used for resizing.
is_inverse : optional: bool. default: True.
- Specifies if the inverse skew is applied.
Returns
---------
out : af.Array
- Output image after skewing.
Note
-----
- If `odim0` and `odim` are 0, the output dimensions are automatically calculated by the function.
"""
output = Array()
safe_call(backend.get().af_skew(ct.pointer(output.arr),
image.arr, ct.c_double(skew0), ct.c_double(skew1),
ct.c_longlong(odim0), ct.c_longlong(odim1),
method.value, is_inverse))
return output
def histogram(image, nbins, min_val = None, max_val = None):
"""
Find the histogram of an image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
nbins : int.
- Number of bins in the histogram.
min_val : optional: scalar. default: None.
- The lower bound for the bin values.
- If None, `af.min(image)` is used.
max_val : optional: scalar. default: None.
- The upper bound for the bin values.
- If None, `af.max(image)` is used.
Returns
---------
hist : af.Array
- Containing the histogram of the image.
"""
from .algorithm import min as af_min
from .algorithm import max as af_max
if min_val is None:
min_val = af_min(image)
if max_val is None:
max_val = af_max(image)
output = Array()
safe_call(backend.get().af_histogram(ct.pointer(output.arr),
image.arr, ct.c_uint(nbins),
ct.c_double(min_val), ct.c_double(max_val)))
return output
def hist_equal(image, hist):
"""
Equalize an image based on a histogram.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
hist : af.Array
- Containing the histogram of an image.
Returns
---------
output : af.Array
- The equalized image.
"""
output = Array()
safe_call(backend.get().af_hist_equal(ct.pointer(output.arr), image.arr, hist.arr))
return output
def dilate(image, mask = None):
"""
Run image dilate on the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
mask : optional: af.Array. default: None.
- Specifies the neighborhood of a pixel.
- When None, a [3, 3] array of all ones is used.
Returns
---------
output : af.Array
- The dilated image.
"""
if mask is None:
mask = constant(1, 3, 3, dtype=Dtype.f32)
output = Array()
safe_call(backend.get().af_dilate(ct.pointer(output.arr), image.arr, mask.arr))
return output
def dilate3(volume, mask = None):
"""
Run volume dilate on a volume.
Parameters
----------
volume : af.Array
- A 3 D arrayfire array representing a volume, or
- A multi dimensional array representing batch of volumes.
mask : optional: af.Array. default: None.
- Specifies the neighborhood of a pixel.
- When None, a [3, 3, 3] array of all ones is used.
Returns
---------
output : af.Array
- The dilated volume.
"""
if mask is None:
mask = constant(1, 3, 3, 3, dtype=Dtype.f32)
output = Array()
safe_call(backend.get().af_dilate3(ct.pointer(output.arr), volume.arr, mask.arr))
return output
def erode(image, mask = None):
"""
Run image erode on the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
mask : optional: af.Array. default: None.
- Specifies the neighborhood of a pixel.
- When None, a [3, 3] array of all ones is used.
Returns
---------
output : af.Array
- The eroded image.
"""
if mask is None:
mask = constant(1, 3, 3, dtype=Dtype.f32)
output = Array()
safe_call(backend.get().af_erode(ct.pointer(output.arr), image.arr, mask.arr))
return output
def erode3(volume, mask = None):
"""
Run volume erode on the volume.
Parameters
----------
volume : af.Array
- A 3 D arrayfire array representing an volume, or
- A multi dimensional array representing batch of volumes.
mask : optional: af.Array. default: None.
- Specifies the neighborhood of a pixel.
- When None, a [3, 3, 3] array of all ones is used.
Returns
---------
output : af.Array
- The eroded volume.
"""
if mask is None:
mask = constant(1, 3, 3, 3, dtype=Dtype.f32)
output = Array()
safe_call(backend.get().af_erode3(ct.pointer(output.arr), volume.arr, mask.arr))
return output
def bilateral(image, s_sigma, c_sigma, is_color = False):
"""
Apply bilateral filter to the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
s_sigma : scalar.
- Sigma value for the co-ordinate space.
c_sigma : scalar.
- Sigma value for the color space.
is_color : optional: bool. default: False.
- Specifies if the third dimension is 3rd channel (if True) or a batch (if False).
Returns
---------
output : af.Array
- The image after the application of the bilateral filter.
"""
output = Array()
safe_call(backend.get().af_bilateral(ct.pointer(output.arr),
image.arr, ct.c_double(s_sigma),
ct.c_double(c_sigma), is_color))
return output
def mean_shift(image, s_sigma, c_sigma, n_iter, is_color = False):
"""
Apply mean shift to the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
s_sigma : scalar.
- Sigma value for the co-ordinate space.
c_sigma : scalar.
- Sigma value for the color space.
n_iter : int.
- Number of mean shift iterations.
is_color : optional: bool. default: False.
- Specifies if the third dimension is 3rd channel (if True) or a batch (if False).
Returns
---------
output : af.Array
- The image after the application of the meanshift.
"""
output = Array()
safe_call(backend.get().af_mean_shift(ct.pointer(output.arr),
image.arr, ct.c_double(s_sigma), ct.c_double(c_sigma),
ct.c_uint(n_iter), is_color))
return output
def medfilt(image, w0 = 3, w1 = 3, edge_pad = PAD.ZERO):
"""
Apply median filter for the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
w0 : optional: int. default: 3.
- The length of the filter along the first dimension.
w1 : optional: int. default: 3.
- The length of the filter along the second dimension.
edge_pad : optional: af.PAD. default: af.PAD.ZERO
- Flag specifying how the median at the edge should be treated.
Returns
---------
output : af.Array
- The image after median filter is applied.
"""
output = Array()
safe_call(backend.get().af_medfilt(ct.pointer(output.arr),
image.arr, ct.c_longlong(w0),
ct.c_longlong(w1), edge_pad.value))
return output
def minfilt(image, w_len = 3, w_wid = 3, edge_pad = PAD.ZERO):
"""
Apply min filter for the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
w0 : optional: int. default: 3.
- The length of the filter along the first dimension.
w1 : optional: int. default: 3.
- The length of the filter along the second dimension.
edge_pad : optional: af.PAD. default: af.PAD.ZERO
- Flag specifying how the min at the edge should be treated.
Returns
---------
output : af.Array
- The image after min filter is applied.
"""
output = Array()
safe_call(backend.get().af_minfilt(ct.pointer(output.arr),
image.arr, ct.c_longlong(w_len),
ct.c_longlong(w_wid), edge_pad.value))
return output
def maxfilt(image, w_len = 3, w_wid = 3, edge_pad = PAD.ZERO):
"""
Apply max filter for the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
w0 : optional: int. default: 3.
- The length of the filter along the first dimension.
w1 : optional: int. default: 3.
- The length of the filter along the second dimension.
edge_pad : optional: af.PAD. default: af.PAD.ZERO
- Flag specifying how the max at the edge should be treated.
Returns
---------
output : af.Array
- The image after max filter is applied.
"""
output = Array()
safe_call(backend.get().af_maxfilt(ct.pointer(output.arr),
image.arr, ct.c_longlong(w_len),
ct.c_longlong(w_wid), edge_pad.value))
return output
def regions(image, conn = CONNECTIVITY.FOUR, out_type = Dtype.f32):
"""
Find the connected components in the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image.
conn : optional: af.CONNECTIVITY. default: af.CONNECTIVITY.FOUR.
- Specifies the connectivity of the pixels.
out_type : optional: af.Dtype. default: af.Dtype.f32.
- Specifies the type for the output.
Returns
---------
output : af.Array
- An array where each pixel is labeled with its component number.
"""
output = Array()
safe_call(backend.get().af_regions(ct.pointer(output.arr), image.arr,
conn.value, out_type.value))
return output
def sobel_derivatives(image, w_len=3):
"""
Find the sobel derivatives of the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
w_len : optional: int. default: 3.
- The size of the sobel operator.
Returns
---------
(dx, dy) : tuple of af.Arrays.
- `dx` is the sobel derivative along the horizontal direction.
- `dy` is the sobel derivative along the vertical direction.
"""
dx = Array()
dy = Array()
safe_call(backend.get().af_sobel_operator(ct.pointer(dx.arr), ct.pointer(dy.arr),
image.arr, ct.c_uint(w_len)))
return dx,dy
def sobel_filter(image, w_len = 3, is_fast = False):
"""
Apply sobel filter to the image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
w_len : optional: int. default: 3.
- The size of the sobel operator.
is_fast : optional: bool. default: False.
- Specifies if the magnitude is generated using SAD (if True) or SSD (if False).
Returns
---------
output : af.Array
- Image containing the magnitude of the sobel derivatives.
"""
from .arith import abs as af_abs
from .arith import hypot as af_hypot
dx,dy = sobel_derivatives(image, w_len)
if (is_fast):
return af_abs(dx) + af_abs(dy)
else:
return af_hypot(dx, dy)
def rgb2gray(image, r_factor = 0.2126, g_factor = 0.7152, b_factor = 0.0722):
"""
Convert RGB image to Grayscale.
Parameters
----------
image : af.Array
- A 3 D arrayfire array representing an 3 channel image, or
- A multi dimensional array representing batch of images.
r_factor : optional: scalar. default: 0.2126.
- Weight for the red channel.
g_factor : optional: scalar. default: 0.7152.
- Weight for the green channel.
b_factor : optional: scalar. default: 0.0722.
- Weight for the blue channel.
Returns
--------
output : af.Array
- A grayscale image.
"""
output=Array()
safe_call(backend.get().af_rgb2gray(ct.pointer(output.arr),
image.arr, ct.c_float(r_factor), ct.c_float(g_factor), ct.c_float(b_factor)))
return output
def gray2rgb(image, r_factor = 1.0, g_factor = 1.0, b_factor = 1.0):
"""
Convert Grayscale image to an RGB image.
Parameters
----------
image : af.Array
- A 2 D arrayfire array representing an image, or
- A multi dimensional array representing batch of images.
r_factor : optional: scalar. default: 1.0.
- Scale factor for the red channel.
g_factor : optional: scalar. default: 1.0.
- Scale factor for the green channel.
b_factor : optional: scalar. default: 1.0
- Scale factor for the blue channel.
Returns
--------
output : af.Array
- An RGB image.
- The channels are not coalesced, i.e. they appear along the third dimension.
"""
output=Array()
safe_call(backend.get().af_gray2rgb(ct.pointer(output.arr),
image.arr, ct.c_float(r_factor), ct.c_float(g_factor), ct.c_float(b_factor)))
return output
def hsv2rgb(image):
"""
Convert HSV image to RGB.
Parameters
----------
image : af.Array
- A 3 D arrayfire array representing an 3 channel image, or
- A multi dimensional array representing batch of images.
Returns
--------
output : af.Array
- A HSV image.
"""
output = Array()
safe_call(backend.get().af_hsv2rgb(ct.pointer(output.arr), image.arr))
return output
def rgb2hsv(image):
"""
Convert RGB image to HSV.
Parameters
----------
image : af.Array
- A 3 D arrayfire array representing an 3 channel image, or
- A multi dimensional array representing batch of images.
Returns
--------
output : af.Array
- A RGB image.
"""
output = Array()
safe_call(backend.get().af_rgb2hsv(ct.pointer(output.arr), image.arr))
return output
def color_space(image, to_type, from_type):
"""
Convert an image from one color space to another.
Parameters
----------
image : af.Array
- A multi dimensional array representing batch of images in `from_type` color space.
to_type : af.CSPACE
- An enum for the destination color space.
from_type : af.CSPACE
- An enum for the source color space.
Returns
--------
output : af.Array
- An image in the `to_type` color space.
"""
output = Array()
safe_call(backend.get().af_color_space(ct.pointer(output.arr), image.arr,
to_type.value, from_type.value))
return output