forked from uxlfoundation/oneDNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtypes.hpp
327 lines (276 loc) · 10.5 KB
/
types.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*******************************************************************************
* Copyright 2022-2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef XPU_SYCL_TYPES_HPP
#define XPU_SYCL_TYPES_HPP
#include <limits>
#include "common/c_types_map.hpp"
#include "common/memory_desc_wrapper.hpp"
#include "common/utils.hpp"
#include "xpu/sycl/compat.hpp"
#include "xpu/sycl/utils.hpp"
namespace dnnl {
namespace impl {
namespace xpu {
namespace sycl {
// The macros are expected to be called within a command group function object
// that is passed to `parallel_for`.
#define CTX_IN_SYCL_KERNEL_MEMORY(arg) \
CTX_IN_STORAGE(arg).is_null() \
? xpu::sycl::memory_storage_base_t::empty_in_memory_arg( \
ctx.stream(), cgh) \
: utils::downcast<const xpu::sycl::memory_storage_base_t *>( \
&CTX_IN_STORAGE(arg)) \
->get_in_memory_arg(ctx.stream(), cgh)
#define CTX_OUT_SYCL_KERNEL_MEMORY(arg) \
CTX_OUT_STORAGE(arg).is_null() \
? xpu::sycl::memory_storage_base_t::empty_out_memory_arg( \
ctx.stream(), cgh) \
: utils::downcast<const xpu::sycl::memory_storage_base_t *>( \
&CTX_OUT_STORAGE(arg)) \
->get_out_memory_arg(ctx.stream(), cgh)
#define CTX_INOUT_SYCL_KERNEL_MEMORY(arg) \
CTX_OUT_STORAGE(arg).is_null() \
? xpu::sycl::memory_storage_base_t::empty_inout_memory_arg( \
ctx.stream(), cgh) \
: utils::downcast<const xpu::sycl::memory_storage_base_t *>( \
&CTX_OUT_STORAGE(arg)) \
->get_inout_memory_arg(ctx.stream(), cgh)
#define CHECK_SYCL_KERNEL_ARG_TYPE(type) \
static_assert(::sycl::is_device_copyable_v<type>)
template <::sycl::access_mode mode>
struct memory_arg_t {
using acc_dt = uint8_t;
using acc_t = ::sycl::accessor<acc_dt, 1, mode>;
static memory_arg_t<mode> create_empty(const acc_t &dummy_acc) {
memory_arg_t<mode> arg(nullptr, dummy_acc);
arg.empty_ = true;
return arg;
}
memory_arg_t(void *usm, const acc_t &dummy_acc)
: empty_(false), usm_(usm), acc_(dummy_acc) {}
memory_arg_t(const acc_t &acc) : empty_(false), usm_(nullptr), acc_(acc) {}
// This method must be called only from inside a kernel.
void *get_pointer() const {
if (usm_) return usm_;
return const_cast<acc_dt *>(
acc_.template get_multi_ptr<::sycl::access::decorated::no>()
.get());
}
bool empty() const { return empty_; }
private:
bool empty_;
void *usm_;
acc_t acc_;
};
// TODO: come up with better names?
using in_memory_arg_t = memory_arg_t<::sycl::access::mode::read>;
using out_memory_arg_t = memory_arg_t<::sycl::access::mode::write>;
using inout_memory_arg_t = memory_arg_t<::sycl::access::mode::read_write>;
// TODO: this class mimics memory_desc_t and makes sure it can be passed
// to SYCL kernels as a kernel argument. SYCL puts restrictions on kernel
// arguments, e.g. those cannot contain unions.
struct md_t {
// There is a limitation on total size of kernel arguments hence using
// reduced number of supported dimensions and int32_t for dimensions.
static constexpr int max_dims = 6;
using dim32_t = int32_t;
using dims32_t = dim32_t[max_dims];
data_type_t data_type() const { return data_type_; }
dim32_t ndims() const { return ndims_; }
dim32_t offset0() const { return offset0_; }
dim32_t inner_nblks() const { return inner_nblks_; }
const dims32_t &dims() const { return dims_; }
const dims32_t &padded_dims() const { return padded_dims_; }
const dims32_t &padded_offsets() const { return padded_offsets_; }
const dims32_t &strides() const { return strides_; }
const dims32_t &inner_blks() const { return inner_blks_; }
const dims32_t &inner_idxs() const { return inner_idxs_; }
md_t() = default;
md_t(const memory_desc_t *md) {
memory_desc_wrapper mdw(md);
assert(mdw.format_kind() == format_kind::blocked);
assert(mdw.ndims() <= max_dims);
const auto &blk = mdw.blocking_desc();
data_type_ = mdw.data_type();
#define CHECK_AND_ASSIGN(lhs, rhs) \
assert((rhs) <= INT32_MAX); \
(lhs) = (rhs)
CHECK_AND_ASSIGN(ndims_, mdw.ndims());
CHECK_AND_ASSIGN(offset0_, mdw.offset0());
CHECK_AND_ASSIGN(inner_nblks_, blk.inner_nblks);
for (int d = 0; d < mdw.ndims(); d++) {
CHECK_AND_ASSIGN(dims_[d], mdw.dims()[d]);
CHECK_AND_ASSIGN(padded_dims_[d], mdw.padded_dims()[d]);
CHECK_AND_ASSIGN(padded_offsets_[d], mdw.padded_offsets()[d]);
CHECK_AND_ASSIGN(strides_[d], blk.strides[d]);
CHECK_AND_ASSIGN(inner_blks_[d], blk.inner_blks[d]);
CHECK_AND_ASSIGN(inner_idxs_[d], blk.inner_idxs[d]);
}
#undef CHECK_AND_ASSIGN
}
template <typename... Args>
dim_t off(Args... args) const {
dims_t pos = {args...};
return off_v(pos, false);
}
dim_t off_v(const dims_t pos, bool is_pos_padded = false) const {
dims_t pos_copy = {0};
for (int d = 0; d < ndims(); ++d)
pos_copy[d] = pos[d] + (is_pos_padded ? 0 : padded_offsets()[d]);
dim_t phys_offset = offset0();
if (inner_nblks() > 0) {
dim_t blk_stride = 1;
for (int iblk = inner_nblks() - 1; iblk >= 0; --iblk) {
const int d = inner_idxs()[iblk];
dim_t p;
if (pos_copy[d] <= INT32_MAX) {
p = (int32_t)pos_copy[d] % (int32_t)inner_blks()[iblk];
pos_copy[d] = (int32_t)pos_copy[d]
/ (int32_t)inner_blks()[iblk];
} else {
p = pos_copy[d] % inner_blks()[iblk];
pos_copy[d] /= inner_blks()[iblk];
}
phys_offset += p * blk_stride;
blk_stride *= inner_blks()[iblk];
}
}
for (int d = 0; d < ndims(); ++d) {
const dim_t p = pos_copy[d];
phys_offset += p * strides()[d];
}
return phys_offset;
}
dim_t off_v_masked(const dims_t pos, int mask, bool is_pos_padded = false) {
dims_t pos_masked;
utils::copy_dims_with_mask(pos_masked, pos, ndims(), mask);
return off_v(pos_masked, is_pos_padded);
}
dim_t off_l(dim_t l_offset, bool is_pos_padded = false) const {
dims_t pos;
for (int rd = 0; rd < ndims(); ++rd) {
const int d = ndims() - 1 - rd;
const dim_t cur_dim = is_pos_padded ? padded_dims()[d] : dims()[d];
if (l_offset <= INT32_MAX && cur_dim <= INT32_MAX) {
pos[d] = (int32_t)l_offset % (int32_t)cur_dim;
l_offset = (int32_t)l_offset / (int32_t)cur_dim;
} else {
pos[d] = l_offset % cur_dim;
l_offset /= cur_dim;
}
}
return off_v(pos, is_pos_padded);
}
private:
data_type_t data_type_;
dim32_t ndims_;
dims32_t dims_;
dims32_t padded_dims_;
dims32_t padded_offsets_;
dim32_t offset0_;
dims32_t strides_;
dim32_t inner_nblks_;
dims32_t inner_blks_;
dims32_t inner_idxs_;
};
struct bfloat16_t {
uint16_t raw_bits_;
bfloat16_t() = default;
constexpr bfloat16_t(uint16_t r) : raw_bits_(r) {}
bfloat16_t(float f) { (*this) = f; }
bfloat16_t &operator=(float f) {
auto iraw = utils::bit_cast<std::array<uint16_t, 2>>(f);
if (::sycl::isnormal(f)) {
// FP_NORMAL: round to nearest even and truncate
const uint32_t rounding_bias = 0x00007FFF + (iraw[1] & 0x1);
const uint32_t int_raw
= utils::bit_cast<uint32_t>(f) + rounding_bias;
iraw = utils::bit_cast<std::array<uint16_t, 2>>(int_raw);
raw_bits_ = iraw[1];
} else if (::sycl::isinf(f)) {
// FP_INFINITE
raw_bits_ = iraw[1];
} else if (::sycl::isnan(f)) {
// FP_NAN: truncate and set MSB of the mantissa force QNAN
raw_bits_ = iraw[1];
raw_bits_ |= 1 << 6;
} else {
// FP_SUBNORMAL, FP_ZERO: sign preserving zero (denormal go to zero)
raw_bits_ = iraw[1];
raw_bits_ &= 0x8000;
}
return *this;
}
operator float() const {
std::array<uint16_t, 2> iraw = {{0, raw_bits_}};
return utils::bit_cast<float>(iraw);
}
};
using float16_t = ::sycl::half;
// Add a check for every SYCL kernel argument type.
//
// Exception: memory_arg_t doesn't pass the check because it contains
// sycl::accessor which is not device copyable. However, it is treated by the
// compiler in a special way allowing it not to satisfy the requirement.
CHECK_SYCL_KERNEL_ARG_TYPE(md_t);
CHECK_SYCL_KERNEL_ARG_TYPE(bfloat16_t);
template <data_type_t>
struct prec_traits;
template <>
struct prec_traits<data_type::f16> {
using type = float16_t;
};
template <>
struct prec_traits<data_type::bf16> {
using type = bfloat16_t;
};
template <>
struct prec_traits<data_type::f32> {
using type = float;
};
template <>
struct prec_traits<data_type::s32> {
using type = int32_t;
};
template <>
struct prec_traits<data_type::s8> {
using type = int8_t;
};
template <>
struct prec_traits<data_type::u8> {
using type = uint8_t;
};
} // namespace sycl
} // namespace xpu
} // namespace impl
} // namespace dnnl
namespace std {
template <>
class numeric_limits<dnnl::impl::xpu::sycl::bfloat16_t> {
public:
static constexpr dnnl::impl::xpu::sycl::bfloat16_t lowest() {
return {uint16_t(0xff7f)};
}
static constexpr dnnl::impl::xpu::sycl::bfloat16_t max() {
return {uint16_t(0x7f7f)};
}
static constexpr int digits = 8;
static constexpr dnnl::impl::xpu::sycl::bfloat16_t epsilon() {
return {uint16_t((0x7f - (digits - 1)) << (digits - 1))};
}
};
} // namespace std
#endif