-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_grounding.py
503 lines (421 loc) · 18.2 KB
/
utils_grounding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
from skimage.feature import peak_local_max
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
import sys
import torch
# from support.layer.nms import nms
import torchvision
from skimage import filters
from skimage.measure import regionprops
rel_peak_thr = .3
rel_rel_thr = .3
ioa_thr = .6
topk_boxes = 3
def heat2bbox(heat_map, original_image_shape):
h, w = heat_map.shape
bounding_boxes = []
heat_map = heat_map - np.min(heat_map)
heat_map = heat_map / np.max(heat_map)
bboxes = []
box_scores = []
peak_coords = peak_local_max(heat_map, exclude_border=False,
threshold_rel=rel_peak_thr) # find local peaks of heat map
heat_resized = cv2.resize(heat_map, (
original_image_shape[1], original_image_shape[0])) ## resize heat map to original image shape
peak_coords_resized = ((peak_coords + 0.5) *
np.asarray([original_image_shape]) /
np.asarray([[h, w]])
).astype('int32')
for pk_coord in peak_coords_resized:
pk_value = heat_resized[tuple(pk_coord)]
mask = heat_resized > pk_value * rel_rel_thr
labeled, n = ndi.label(mask)
l = labeled[tuple(pk_coord)]
yy, xx = np.where(labeled == l)
min_x = np.min(xx)
min_y = np.min(yy)
max_x = np.max(xx)
max_y = np.max(yy)
bboxes.append((min_x, min_y, max_x, max_y))
box_scores.append(pk_value) # you can change to pk_value * probability of sentence matching image or etc.
## Merging boxes that overlap too much
box_idx = np.argsort(-np.asarray(box_scores))
box_idx = box_idx[:min(topk_boxes, len(box_scores))]
bboxes = [bboxes[i] for i in box_idx]
box_scores = [box_scores[i] for i in box_idx]
to_remove = []
for iii in range(len(bboxes)):
for iiii in range(iii):
if iiii in to_remove:
continue
b1 = bboxes[iii]
b2 = bboxes[iiii]
isec = max(min(b1[2], b2[2]) - max(b1[0], b2[0]), 0) * max(min(b1[3], b2[3]) - max(b1[1], b2[1]), 0)
ioa1 = isec / ((b1[2] - b1[0]) * (b1[3] - b1[1]))
ioa2 = isec / ((b2[2] - b2[0]) * (b2[3] - b2[1]))
if ioa1 > ioa_thr and ioa1 == ioa2:
to_remove.append(iii)
elif ioa1 > ioa_thr and ioa1 >= ioa2:
to_remove.append(iii)
elif ioa2 > ioa_thr and ioa2 >= ioa1:
to_remove.append(iiii)
for i in range(len(bboxes)):
if i not in to_remove:
bounding_boxes.append({
'score': box_scores[i],
'bbox': bboxes[i],
'bbox_normalized': np.asarray([
bboxes[i][0] / heat_resized.shape[1],
bboxes[i][1] / heat_resized.shape[0],
bboxes[i][2] / heat_resized.shape[1],
bboxes[i][3] / heat_resized.shape[0],
]),
})
return bounding_boxes
def img_heat_bbox_disp(image, heat_map, title='', en_name='', alpha=0.6, cmap='viridis', cbar='False', dot_max=False,
bboxes=[], order=None, show=True):
thr_hit = 1 # a bbox is acceptable if hit point is in middle 85% of bbox area
thr_fit = .60 # the biggest acceptable bbox should not exceed 60% of the image
H, W = image.shape[0:2]
# resize heat map
heat_map_resized = cv2.resize(heat_map, (H, W))
# display
fig = plt.figure(figsize=(15, 5))
fig.suptitle(title, size=15)
ax = plt.subplot(1, 3, 1)
plt.imshow(image)
if dot_max:
max_loc = np.unravel_index(np.argmax(heat_map_resized, axis=None), heat_map_resized.shape)
plt.scatter(x=max_loc[1], y=max_loc[0], edgecolor='w', linewidth=3)
if len(bboxes) > 0: # it gets normalized bbox
if order == None:
order = 'xxyy'
for i in range(len(bboxes)):
bbox_norm = bboxes[i]
if order == 'xxyy':
x_min, x_max, y_min, y_max = int(bbox_norm[0] * W), int(bbox_norm[1] * W), int(bbox_norm[2] * H), int(
bbox_norm[3] * H)
elif order == 'xyxy':
x_min, x_max, y_min, y_max = int(bbox_norm[0] * W), int(bbox_norm[2] * W), int(bbox_norm[1] * H), int(
bbox_norm[3] * H)
x_length, y_length = x_max - x_min, y_max - y_min
box = plt.Rectangle((x_min, y_min), x_length, y_length, edgecolor='w', linewidth=3, fill=False)
plt.gca().add_patch(box)
if en_name != '':
ax.text(x_min + .5 * x_length, y_min + 10, en_name,
verticalalignment='center', horizontalalignment='center',
# transform=ax.transAxes,
color='white', fontsize=15)
# an = ax.annotate(en_name, xy=(x_min,y_min), xycoords="data", va="center", ha="center", bbox=dict(boxstyle="round", fc="w"))
# plt.gca().add_patch(an)
plt.imshow(heat_map_resized, alpha=alpha, cmap=cmap)
# plt.figure(2, figsize=(6, 6))
plt.subplot(1, 3, 2)
plt.imshow(image)
# plt.figure(3, figsize=(6, 6))
plt.subplot(1, 3, 3)
plt.imshow(heat_map_resized)
fig.tight_layout()
fig.subplots_adjust(top=.85)
if show:
plt.show()
else:
plt.close()
return fig
def filter_bbox(bbox_dict, order=None):
thr_fit = .90 # the biggest acceptable bbox should not exceed 80% of the image
if order == None:
order = 'xxyy'
filtered_bbox = []
filtered_bbox_norm = []
filtered_score = []
if len(bbox_dict) > 0: # it gets normalized bbox
for i in range(len(bbox_dict)):
bbox = bbox_dict[i]['bbox']
bbox_norm = bbox_dict[i]['bbox_normalized']
bbox_score = bbox_dict[i]['score']
if order == 'xxyy':
x_min, x_max, y_min, y_max = bbox_norm[0], bbox_norm[1], bbox_norm[2], bbox_norm[3]
elif order == 'xyxy':
x_min, x_max, y_min, y_max = bbox_norm[0], bbox_norm[2], bbox_norm[1], bbox_norm[3]
if bbox_score > 0:
x_length, y_length = x_max - x_min, y_max - y_min
if x_length * y_length < thr_fit:
filtered_score.append(bbox_score)
filtered_bbox.append(bbox)
filtered_bbox_norm.append(bbox_norm)
return filtered_bbox, filtered_bbox_norm, filtered_score
def crop_resize_im(image, bbox, size, order='xxyy'):
H, W, _ = image.shape
if order == 'xxyy':
roi = image[int(bbox[2] * H):int(bbox[3] * H), int(bbox[0] * W):int(bbox[1] * W), :]
elif order == 'xyxy':
roi = image[int(bbox[1] * H):int(bbox[3] * H), int(bbox[0] * W):int(bbox[2] * W), :]
roi = cv2.resize(roi, size)
return roi
def im2double(im):
return cv2.normalize(im.astype('float'), None, 0.0, 1.0, cv2.NORM_MINMAX)
def IoU(boxA, boxB):
# order = xyxy
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA) * max(0, yB - yA)
# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou
def img_heat_bbox_disp(image, heat_map, size, title='', en_name='', alpha=0.6, cmap='viridis', cbar='False', dot_max=True,
gt=[], bbox=[], order=None, show=False, filename=''):
heat_map = (256 * heat_map).astype(np.uint8)
thr_hit = 1 # a bbox is acceptable if hit point is in middle 85% of bbox area
thr_fit = .60 # the biggest acceptable bbox should not exceed 60% of the image
H, W = size
# resize heat map
heat_map_resized = cv2.resize(heat_map, (W, H))
image = cv2.resize(image, (W, H))
# heat_map_resized = heat_map
# display
fig = plt.figure(figsize=(15, 5))
fig.suptitle(title, size=15)
ax = plt.subplot(1, 3, 1)
plt.imshow(image)
if dot_max:
max_loc = np.unravel_index(np.argmax(heat_map_resized, axis=None), heat_map_resized.shape)
plt.scatter(x=max_loc[1], y=max_loc[0], edgecolor='w', linewidth=3)
# if len(bboxes) > 0: # it gets normalized bbox
# if order == None:
# order = 'xxyy'
#
# for i in range(len(bboxes)):
# bbox_norm = bboxes[i]
# if order == 'xxyy':
# x_min, x_max, y_min, y_max = int(bbox_norm[0] * W), int(bbox_norm[1] * W), int(bbox_norm[2] * H), int(
# bbox_norm[3] * H)
# elif order == 'xyxy':
# x_min, x_max, y_min, y_max = int(bbox_norm[0] * W), int(bbox_norm[2] * W), int(bbox_norm[1] * H), int(
# bbox_norm[3] * H)
# x_length, y_length = x_max - x_min, y_max - y_min
# if en_name != '':
# ax.text(x_min + .5 * x_length, y_min + 10, en_name,
# verticalalignment='center', horizontalalignment='center',
# # transform=ax.transAxes,
# color='white', fontsize=15)
# an = ax.annotate(en_name, xy=(x_min,y_min), xycoords="data", va="center", ha="center", bbox=dict(boxstyle="round", fc="w"))
# plt.gca().add_patch(an)
plt.imshow(heat_map_resized, alpha=alpha, cmap=cmap)
# plt.figure(2, figsize=(6, 6))
plt.subplot(1, 3, 2)
plt.imshow(image)
# box = plt.Rectangle((gt[0, 0], gt[0, 1]), gt[0, 2] - gt[0, 0], gt[0, 3] - gt[0, 1],
# edgecolor='w', linewidth=3, fill=False, color='green')
# plt.gca().add_patch(box)
# if len(bbox) > 0:
# box = plt.Rectangle((bbox[0][0], bbox[0][1]), bbox[0][2] - bbox[0][0], bbox[0][3] - bbox[0][1],
# edgecolor='w', linewidth=3, fill=False, color='red')
# plt.gca().add_patch(box)
# plt.figure(3, figsize=(6, 6))
plt.subplot(1, 3, 3)
plt.imshow(heat_map_resized, cmap='jet')
fig.tight_layout()
fig.subplots_adjust(top=.85)
if show:
plt.show()
else:
plt.savefig(filename, bbox_inches='tight')
plt.close()
def isCorrect(bbox_annot, bbox_pred, iou_thr=.5, size_h=224):
for bbox_p in bbox_pred:
bbox_p = (np.array(bbox_p) / size_h).tolist()
for bbox_a in bbox_annot:
if IoU(bbox_p, bbox_a) >= iou_thr:
return 1
return 0
def isCorrectHit(bbox_annot, heatmap, orig_img_shape):
H, W = orig_img_shape
heatmap_resized = cv2.resize(heatmap, (W, H))
max_loc = np.unravel_index(np.argmax(heatmap_resized, axis=None), heatmap_resized.shape)
# try:
# threshold_value = filters.threshold_minimum(heatmap_resized)
# labeled_foreground = (heatmap_resized > threshold_value).astype(int)
# properties = regionprops(labeled_foreground, heatmap_resized)
# center_of_mass = properties[0].centroid
# weighted_center_of_mass = properties[0].weighted_centroid
# max_loc = weighted_center_of_mass
# except:
# max_loc = np.unravel_index(np.argmax(heatmap_resized, axis=None), heatmap_resized.shape)
for bbox in bbox_annot:
if bbox[0] <= max_loc[1] <= bbox[2] and bbox[1] <= max_loc[0] <= bbox[3]:
return 1
return 0
def check_percent(bboxes):
for bbox in bboxes:
x_length = bbox[2] - bbox[0]
y_length = bbox[3] - bbox[1]
if x_length * y_length < .05:
return False
return True
def union(bbox):
if len(bbox) == 0:
return []
if type(bbox[0]) == type(0.0) or type(bbox[0]) == type(0):
bbox = [bbox]
maxes = np.max(bbox, axis=0)
mins = np.min(bbox, axis=0)
return [[mins[0], mins[1], maxes[2], maxes[3]]]
def attCorrectness(bbox_annot, heatmap, orig_img_shape):
H, W = orig_img_shape
heatmap_resized = cv2.resize(heatmap, (W, H))
h_s = np.sum(heatmap_resized)
if h_s == 0:
return 0
else:
heatmap_resized /= h_s
att_correctness = 0
for bbox in bbox_annot:
x0, y0, x1, y1 = bbox
att_correctness += np.sum(heatmap_resized[y0:y1, x0:x1])
return att_correctness
def calc_correctness(annot, heatmap, orig_img_shape):
# bbox_dict = heat2bbox(heatmap, orig_img_shape)
size_h = heatmap.shape[-1]
bbox_dict = generate_bbox(heatmap)
# bbox, bbox_norm, bbox_score = filter_bbox(bbox_dict=bbox_dict, order='xyxy')
annot = process_gt_bbox(annot, orig_img_shape)
bbox_norm_annot = union(annot['bbox_norm'])
bbox_annot = annot['bbox']
bbox_dict = union(np.array(bbox_dict)[:, :4])
bbox_correctness = isCorrect(bbox_norm_annot, bbox_dict, iou_thr=.5, size_h=size_h)
hit_correctness = isCorrectHit(bbox_annot, heatmap, orig_img_shape)
# att_correctness = attCorrectness(bbox_annot, heatmap, orig_img_shape)
# return bbox_correctness, hit_correctness, att_correctness, bbox
# return bbox_correctness, hit_correctness, att_correctness
return bbox_correctness, hit_correctness, 0
def process_gt_bbox(annot, orig_img_shape):
out = {}
h, w = orig_img_shape
bbox = torch.tensor(annot).numpy()
out['bbox'] = bbox.copy()
bbox = bbox.astype(np.float)
bbox[:, 0] = bbox[:, 0] / w
bbox[:, 1] = bbox[:, 1] / h
bbox[:, 2] = bbox[:, 2] / w
bbox[:, 3] = bbox[:, 3] / h
out['bbox_norm'] = bbox.copy()
return out
def no_tuple(a):
out = []
for item in a:
out.append(item[0])
return out
def cluster_gt(bbox, heatmap):
out = {}
bbox = torch.tensor(bbox).numpy().squeeze()
for i in range(len(bbox)):
curr_heatmap = heatmap[i:i+1].clone()
curr_bbox = bbox[i].copy()
if len(out.keys()) == 0:
out[str(len(out.keys()))] = (curr_bbox, curr_heatmap)
continue
flag = False
for j, key in enumerate(out.keys()):
old_bbox, old_heatmap = out[key]
if IoU(curr_bbox, old_bbox) == 1:
out[key] = (curr_bbox, torch.cat((old_heatmap, curr_heatmap), dim=0))
flag = True
break
if not flag:
out[str(len(out.keys()))] = (curr_bbox, curr_heatmap)
for ix, key in enumerate(out.keys()):
curr_bbox, old_heatmap = out[key]
old_heatmap = old_heatmap.mean(dim=0).squeeze().detach().clone().cpu().numpy()
out[key] = (np.expand_dims(curr_bbox, axis=0),
old_heatmap)
return out
def intensity_to_rgb(intensity, cmap='cubehelix', normalize=False):
assert intensity.ndim == 2, intensity.shape
intensity = intensity.astype("float")
if normalize:
intensity -= intensity.min()
intensity /= intensity.max()
cmap = plt.get_cmap(cmap)
intensity = cmap(intensity)[..., :3]
return intensity.astype('float32') * 255.0
def generate_bbox(cam, threshold=0.5, nms_threshold=0.05, max_drop_th=0.5):
heatmap = intensity_to_rgb(cam, normalize=True).astype('uint8')
gray_heatmap = cv2.cvtColor(heatmap, cv2.COLOR_RGB2GRAY)
thr_val = threshold * np.max(gray_heatmap)
_, thr_gray_heatmap = cv2.threshold(gray_heatmap,
int(thr_val), 255,
cv2.THRESH_TOZERO)
try:
_, contours, _ = cv2.findContours(thr_gray_heatmap,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
except:
contours, _ = cv2.findContours(thr_gray_heatmap,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
if len(contours) != 0:
proposals = [cv2.boundingRect(c) for c in contours]
# proposals = [(x, y, w, h) for (x, y, w, h) in proposals if h * w > 0.05 * 224 * 224]
if len(proposals) > 0:
proposals_with_conf = [thr_gray_heatmap[y:y + h, x:x + w].mean()/255 for (x, y, w, h) in proposals]
inx = torchvision.ops.nms(torch.tensor(proposals).float(),
torch.tensor(proposals_with_conf).float(),
nms_threshold)
estimated_bbox = torch.cat((torch.tensor(proposals).float()[inx],
torch.tensor(proposals_with_conf)[inx].unsqueeze(dim=1)),
dim=1).tolist()
estimated_bbox = [(x, y, x+w, y+h, conf) for (x, y, w, h, conf) in estimated_bbox
if conf > max_drop_th * np.max(proposals_with_conf)]
else:
estimated_bbox = [[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]]
else:
estimated_bbox = [[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]]
return estimated_bbox
def generate_proposals(cam, threshold=0.5):
heatmap = intensity_to_rgb(cam, normalize=True).astype('uint8')
gray_heatmap = cv2.cvtColor(heatmap, cv2.COLOR_RGB2GRAY)
thr_val = threshold * np.max(gray_heatmap)
_, gray_heatmap = cv2.threshold(gray_heatmap,
int(thr_val), 255,
cv2.THRESH_TOZERO)
try:
_, contours, _ = cv2.findContours(gray_heatmap,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
except:
contours, _ = cv2.findContours(gray_heatmap,
cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
proposals = []
for c in contours:
if c.shape[0]<5:
continue
x, y, w, h = cv2.boundingRect(c)
energy = gray_heatmap[y:y + h, x:x + w].sum() / gray_heatmap.sum()
if energy < 1:
proposals.append([x, y, x + w, y + h, energy])
return proposals, gray_heatmap
def get_scores(proposals, mask):
scores = []
bboxes = []
for p in proposals:
x, y, w, h = p
if w*h < 0.05*224*224:
continue
energy = (mask[y:y + h, x:x + w, :]/255/3).sum()/(w*h)
scores.append(energy)
bboxes.append([x, y, x+w, h+y])
return bboxes, scores