forked from uxlfoundation/oneDNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacl_softmax.cpp
177 lines (140 loc) · 6.69 KB
/
acl_softmax.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*******************************************************************************
* Copyright 2021-2024 Arm Ltd. and affiliates
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "cpu/aarch64/acl_softmax.hpp"
namespace dnnl {
namespace impl {
namespace cpu {
namespace aarch64 {
const acl_softmax_fwd_t::pd_t *acl_softmax_fwd_t::pd() const {
return static_cast<const pd_t *>(primitive_t::pd().get());
}
status_t acl_softmax_fwd_t::pd_t::init(engine_t *engine) {
bool ok = is_fwd()
&& set_default_formats() == status::success
// ACL only supports matching src/dst (this must come after
// set_default_formats() to handle format_kind::any)
&& *src_md() == *dst_md()
&& utils::one_of(
src_md()->data_type, data_type::f32, data_type::f16)
&& attr()->has_default_values();
if (!ok) return status::unimplemented;
// Get memory desc to find sizes and dims
const memory_desc_wrapper src_d(src_md());
const data_type_t data_type = src_d.data_type();
// ACL only supports plain tensors, can be permuted but not blocked
if (!src_d.is_plain()) return status::unimplemented;
// Guards against a 0-sized dimension
if (src_d.has_zero_dim()) return status::unimplemented;
// No scaling
asp_.beta = 1;
asp_.is_logsoftmax = is_logsoftmax();
// The strides give us the in memory inner size
dim_t inner_size_ = src_d.blocking_desc().strides[axis()];
dim_t axis_size_ = axis_size();
// The outer size is any left-over dimensions not inner or on the axis
dim_t outer_size_ = src_d.nelems() / (inner_size_ * axis_size_);
// In this context, NHWC tells ACL that the logical and physical
// dimensions are the same
arm_compute::DataLayout acl_layout = arm_compute::DataLayout::NHWC;
const arm_compute::DataType acl_data_t
= acl_utils::get_acl_data_t(data_type);
const int threads = dnnl_get_max_threads();
// A rough empirical heuristic created by fitting a polynomial
// of the tensor sizes and thread count to the run time of the
// ref and ACL softmax. This variable is greater than zero when
// ref is faster, and less than zero when ACL is faster. We can
// interpret the constant term as the constant overhead
// associated with calling the external library and the negative
// coefficient on total_size as ACL being faster at processing
// each element
auto calculate_performance_diff = [](dnnl::impl::dim_t outer_size,
dnnl::impl::dim_t axis_size,
const int threads,
double sec_coff) {
double acl_ref_performance_diff = 1 + 0.005 * outer_size
+ sec_coff * axis_size
* std::ceil(double(outer_size) / threads);
if (threads > 1 || outer_size > 1) {
acl_ref_performance_diff
+= 17; // Adds constant overhead for using threads within ACL
}
return acl_ref_performance_diff;
};
if (inner_size_ == 1) {
double acl_ref_performance_diff = calculate_performance_diff(
outer_size_, axis_size_, threads, -0.0027);
if (acl_ref_performance_diff > 0) return status::unimplemented;
// If the inner size is 1, we can get rid of the dimension.
// This stops ACL doing a unnecessary permute
arm_compute::TensorShape acl_tensor_shape
= arm_compute::TensorShape(axis_size_, outer_size_);
asp_.axis = 0;
asp_.src_info = arm_compute::TensorInfo(
acl_tensor_shape, 1, acl_data_t, acl_layout);
asp_.dst_info = arm_compute::TensorInfo(
acl_tensor_shape, 1, acl_data_t, acl_layout);
} else {
// A rough empirical heuristic, see comment above
// The only difference here is that ACL does a reorder, and so
// is considerably better
double acl_ref_performance_diff = calculate_performance_diff(
outer_size_, axis_size_, threads, -0.01);
if (acl_ref_performance_diff > 0) return status::unimplemented;
// Irrespective of the input dimensions, we construct a tensor
// with dimensions such that softmax can be applied over the
// middle axis (1), with the correct stride and vector length.
arm_compute::TensorShape acl_tensor_shape = arm_compute::TensorShape(
inner_size_, axis_size_, outer_size_);
asp_.axis = 1;
asp_.src_info = arm_compute::TensorInfo(
acl_tensor_shape, 1, acl_data_t, acl_layout);
asp_.dst_info = arm_compute::TensorInfo(
acl_tensor_shape, 1, acl_data_t, acl_layout);
}
// Validate manually to check for return status
ACL_CHECK_VALID(arm_compute::experimental::op::CpuSoftmax::validate(
&asp_.src_info, &asp_.dst_info, asp_.beta, asp_.axis));
return status::success;
}
status_t acl_softmax_fwd_t::init(engine_t *engine) {
auto asp = pd()->asp_;
auto op = std::make_unique<arm_compute::experimental::op::CpuSoftmax>();
softmax_op_ = std::move(op);
// Configure softmax operation, mem allocation happens.
softmax_op_->configure(&asp.src_info, &asp.dst_info, asp.beta, asp.axis,
asp.is_logsoftmax);
return status::success;
}
status_t acl_softmax_fwd_t::execute_forward(const exec_ctx_t &ctx) const {
auto src = CTX_IN_MEM(const void *, DNNL_ARG_SRC);
auto dst = CTX_OUT_MEM(void *, DNNL_ARG_DST);
auto asp = pd()->asp_;
arm_compute::Tensor src_tensor;
arm_compute::Tensor dst_tensor;
src_tensor.allocator()->init(asp.src_info);
src_tensor.allocator()->import_memory(const_cast<void *>(src));
dst_tensor.allocator()->init(asp.dst_info);
dst_tensor.allocator()->import_memory(dst);
arm_compute::ITensorPack run_pack {
{arm_compute::TensorType::ACL_SRC_0, &src_tensor},
{arm_compute::TensorType::ACL_DST, &dst_tensor}};
softmax_op_->run(run_pack);
return status::success;
}
} // namespace aarch64
} // namespace cpu
} // namespace impl
} // namespace dnnl