Skip to content

Latest commit

 

History

History
410 lines (335 loc) · 10.7 KB

04-certificate-authority.md

File metadata and controls

410 lines (335 loc) · 10.7 KB

Provisioning a CA and Generating TLS Certificates

In this lab you will provision a PKI Infrastructure using CloudFlare's PKI toolkit, cfssl, then use it to bootstrap a Certificate Authority, and generate TLS certificates for the following components: etcd, kube-apiserver, kube-controller-manager, kube-scheduler, kubelet, and kube-proxy.

Certificate Authority

In this section you will provision a Certificate Authority that can be used to generate additional TLS certificates.

Generate the CA configuration file, certificate, and private key:

$ cat > ca-config.json <<EOF
{
  "signing": {
    "default": {
      "expiry": "8760h"
    },
    "profiles": {
      "kubernetes": {
        "usages": ["signing", "key encipherment", "server auth", "client auth"],
        "expiry": "8760h"
      }
    }
  }
}
EOF

$ cat > ca-csr.json <<EOF
{
  "CN": "Kubernetes",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "Kubernetes",
      "OU": "CA",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert -initca ca-csr.json | cfssljson -bare ca

Results:

ca-key.pem
ca.pem

Client and Server Certificates

In this section you will generate client and server certificates for each Kubernetes component and a client certificate for the Kubernetes admin user.

The Admin Client Certificate

Generate the admin client certificate and private key:

$ cat > admin-csr.json <<EOF
{
  "CN": "admin",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "system:masters",
      "OU": "Kubernetes The Hard Way",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  admin-csr.json | cfssljson -bare admin

Results:

admin-key.pem
admin.pem

The Kubelet Client Certificates

Kubernetes uses a special-purpose authorization mode called Node Authorizer, that specifically authorizes API requests made by Kubelets. In order to be authorized by the Node Authorizer, Kubelets must use a credential that identifies them as being in the system:nodes group, with a username of system:node:<nodeName>. In this section you will create a certificate for each Kubernetes worker node that meets the Node Authorizer requirements.

Generate a certificate and private key for each Kubernetes worker node:

$ for instance in worker-0 worker-1 worker-2; do
  cat > ${instance}-csr.json <<EOF
  {
    "CN": "system:node:${instance}",
    "key": {
      "algo": "rsa",
      "size": 2048
    },
    "names": [
      {
        "C": "US",
        "L": "Portland",
        "O": "system:nodes",
        "OU": "Kubernetes The Hard Way",
        "ST": "Oregon"
      }
    ]
  }
EOF
  
  EXTERNAL_IP=$(aws ec2 describe-instances --filters "Name=tag:Name,Values=${instance}" "Name=instance-state-name,Values=running" \
  --query 'Reservations[0].Instances[0].PublicIpAddress' --output text)
  
  INTERNAL_IP=$(aws ec2 describe-instances --filters "Name=tag:Name,Values=${instance}" "Name=instance-state-name,Values=running" \
    --query 'Reservations[0].Instances[0].PrivateIpAddress' --output text)
  
  cfssl gencert \
    -ca=ca.pem \
    -ca-key=ca-key.pem \
    -config=ca-config.json \
    -hostname=${instance},${EXTERNAL_IP},${INTERNAL_IP} \
    -profile=kubernetes \
    ${instance}-csr.json | cfssljson -bare ${instance}
done

Results:

worker-0-key.pem
worker-0.pem
worker-1-key.pem
worker-1.pem
worker-2-key.pem
worker-2.pem

The Controller Manager Client Certificate

Generate the kube-controller-manager client certificate and private key:

$ cat > kube-controller-manager-csr.json <<EOF
{
  "CN": "system:kube-controller-manager",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "system:kube-controller-manager",
      "OU": "Kubernetes The Hard Way",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager

Results:

kube-controller-manager-key.pem
kube-controller-manager.pem

The Kube Proxy Client Certificate

Generate the kube-proxy client certificate and private key:

$ cat > kube-proxy-csr.json <<EOF
{
  "CN": "system:kube-proxy",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "system:node-proxier",
      "OU": "Kubernetes The Hard Way",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  kube-proxy-csr.json | cfssljson -bare kube-proxy

Results:

kube-proxy-key.pem
kube-proxy.pem

The Scheduler Client Certificate

Generate the kube-scheduler client certificate and private key:

$ cat > kube-scheduler-csr.json <<EOF
{
  "CN": "system:kube-scheduler",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "system:kube-scheduler",
      "OU": "Kubernetes The Hard Way",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  kube-scheduler-csr.json | cfssljson -bare kube-scheduler

Results:

kube-scheduler-key.pem
kube-scheduler.pem

The Kubernetes API Server Certificate

In the previous section we've created Kubernetes Public IP Address with Elastic IP Addresses (EIP). The EIP will be included in the list of subject alternative names for the Kubernetes API Server certificate. This will ensure the certificate can be validated by remote clients.

You can retrieve the EIP named eip-kubernetes-the-hard-way we've created in the previous section by executing following command:

$ aws ec2 describe-addresses \
  --filters "Name=tag:Name,Values=eip-kubernetes-the-hard-way" \
  --query 'Addresses[0].PublicIp' --output text
xxx.xxx.xxx.xx

$ KUBERNETES_PUBLIC_ADDRESS=$(aws ec2 describe-addresses \
  --filters "Name=tag:Name,Values=eip-kubernetes-the-hard-way" \
  --query 'Addresses[0].PublicIp' --output text)

Then, using this environemnt variable let's generate the Kubernetes API Server certificate and private key:

$ KUBERNETES_HOSTNAMES=kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster,kubernetes.svc.cluster.local

$ cat > kubernetes-csr.json <<EOF
{
  "CN": "kubernetes",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "Kubernetes",
      "OU": "Kubernetes The Hard Way",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -hostname=10.32.0.1,10.240.0.10,10.240.0.11,10.240.0.12,${KUBERNETES_PUBLIC_ADDRESS},127.0.0.1,${KUBERNETES_HOSTNAMES} \
  -profile=kubernetes \
  kubernetes-csr.json | cfssljson -bare kubernetes

The Kubernetes API server is automatically assigned the kubernetes internal dns name, which will be linked to the first IP address (10.32.0.1) from the address range (10.32.0.0/24) reserved for internal cluster services during the control plane bootstrapping lab.

Results:

kubernetes-key.pem
kubernetes.pem

The Service Account Key Pair

The Kubernetes Controller Manager leverages a key pair to generate and sign service account tokens as described in the managing service accounts documentation.

Generate the service-account certificate and private key:

$ cat > service-account-csr.json <<EOF
{
  "CN": "service-accounts",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "US",
      "L": "Portland",
      "O": "Kubernetes",
      "OU": "Kubernetes The Hard Way",
      "ST": "Oregon"
    }
  ]
}
EOF

$ cfssl gencert \
  -ca=ca.pem \
  -ca-key=ca-key.pem \
  -config=ca-config.json \
  -profile=kubernetes \
  service-account-csr.json | cfssljson -bare service-account

Results:

service-account-key.pem
service-account.pem

Distribute the Client and Server Certificates

Copy the appropriate certificates and private keys to each worker EC2 instance:

$ aws ec2 describe-instances --filters Name=vpc-id,Values=vpc-xxxxxxxxxxxxxxxxx \
  --query 'Reservations[].Instances[].[Tags[?Key==`Name`].Value | [0],InstanceId,Placement.AvailabilityZone,PrivateIpAddress,PublicIpAddress,State.Name]' \
  --output text | sort | grep worker
worker-0        i-aaaaaaaaaaaaaaaaa     ap-northeast-1c 10.240.0.20     aa.aaa.aaa.aaa  running
worker-1        i-bbbbbbbbbbbbbbbbb     ap-northeast-1c 10.240.0.21     b.bbb.b.bbb     running
worker-2        i-ccccccccccccccccc     ap-northeast-1c 10.240.0.22     cc.ccc.cc.ccc   running

$ scp -i ~/.ssh/your_ssh_key worker-0-key.pem worker-0.pem ca.pem ubuntu@aa.aaa.aaa.aaa:~/
$ scp -i ~/.ssh/your_ssh_key worker-1-key.pem worker-1.pem ca.pem ubuntu@b.bbb.b.bbb:~/
$ scp -i ~/.ssh/your_ssh_key worker-2-key.pem worker-2.pem ca.pem ubuntu@cc.ccc.cc.ccc:~/

Copy the appropriate certificates and private keys to each master EC2 instance:

$ aws ec2 describe-instances --filters Name=vpc-id,Values=vpc-xxxxxxxxxxxxxxxxx \
  --query 'Reservations[].Instances[].[Tags[?Key==`Name`].Value | [0],InstanceId,Placement.AvailabilityZone,PrivateIpAddress,PublicIpAddress,State.Name]' \
  --output text | sort | grep master
master-0        i-xxxxxxxxxxxxxxxxx     ap-northeast-1c 10.240.0.10     xx.xxx.xxx.xxx  running
master-1        i-yyyyyyyyyyyyyyyyy     ap-northeast-1c 10.240.0.11     yy.yyy.yyy.yy   running
master-2        i-zzzzzzzzzzzzzzzzz     ap-northeast-1c 10.240.0.12     zz.zzz.z.zzz    running

$ for masternode in xx.xxx.xxx.xxx yy.yyy.yyy.yy zz.zzz.z.zzz; do
  scp -i ~/.ssh/your_ssh_key \
    ca.pem ca-key.pem kubernetes-key.pem kubernetes.pem service-account-key.pem service-account.pem \
    ubuntu@${masternode}:~/
done

The kube-proxy, kube-controller-manager, kube-scheduler, and kubelet client certificates will be used to generate client authentication configuration files in the next lab.

Next: Generating Kubernetes Configuration Files for Authentication