-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshanoi.v
105 lines (90 loc) · 3.57 KB
/
shanoi.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
From mathcomp Require Import all_ssreflect.
From hanoi Require Import gdist ghanoi.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section sHanoi.
(*****************************************************************************)
(* The pegs are the elements of 'I_n.+3 *)
(*****************************************************************************)
Variable m : nat.
Implicit Type p : peg m.+3.
Local Notation "c1 `--> c2" := (smove c1 c2)
(format "c1 `--> c2", at level 60).
Local Notation "c1 `-->* c2" := (connect smove c1 c2)
(format "c1 `-->* c2", at level 60).
Let p0 : peg m.+3 := ord0.
Definition so1 p : (peg m.+3) := if (p == inord 1) then inord 2 else inord 1.
Lemma so1_cor p : so1 p != p0 /\ so1 p != p.
Proof.
rewrite /so1; case: (p =P _) => [->|/eqP pD1]; split.
- by apply/eqP/val_eqP; rewrite /= !inordK.
- by apply/eqP/val_eqP; rewrite /= !inordK.
- by apply/eqP/val_eqP; rewrite /= !inordK.
by rewrite eq_sym.
Qed.
Definition so2 p1 p2 : (peg m.+3) :=
if (p1 == inord 1) then
if (p2 == inord 2) then inord 3 else inord 2
else
if (p2 == inord 1) then
if (p1 == inord 2) then inord 3 else inord 2
else inord 1.
Lemma so2_cor p1 p2 :
0 < m ->
[/\ so2 p1 p2 != p0, so2 p1 p2 != p1 & so2 p1 p2 != p2].
Proof.
move=> m_gt0.
rewrite /so2; case: (p1 =P _) => [->|/eqP p1D1];
rewrite /so2; case: (p2 =P _) => [->|/eqP p2D].
- by split; apply/eqP/val_eqP; rewrite /= !inordK.
- by split; try (by rewrite eq_sym); apply/eqP/val_eqP; rewrite /= !inordK.
- case: (p1 =P _) => [->|/eqP p1D2].
by split; apply/eqP/val_eqP; rewrite /= !inordK.
by split; try (by rewrite eq_sym); apply/eqP/val_eqP; rewrite /= !inordK.
by split; try (by rewrite eq_sym); apply/eqP/val_eqP; rewrite /= !inordK.
Qed.
Lemma shanoi_connect_perfect n (c : configuration _ n) p : c `-->* `c[p].
Proof.
have sirr := @sirr m.+3.
elim: n c p => [c p | n IH c p]; first by apply/eq_connect0/ffunP=> [] [[]].
pose p1 := c ldisk.
rewrite -[c]cunliftrK -/p1 -[perfect p]cunliftrK perfect_unliftr ffunE.
have [<-|/eqP pDp1] := p =P p1; first by apply/connect_liftr/IH.
have [p1Ep0|/eqP p1Dp0] := p1 =P p0.
rewrite p1Ep0.
case: (so1_cor p) => sDp0 sDp.
apply: connect_trans (_ : connect _ ↑[`c[so1 p]]_p _); last first.
by apply/connect_liftr/IH.
apply: connect_trans (_ : connect _ ↑[`c[so1 p]]_p0 _).
by apply/connect_liftr/IH.
apply/connect1/move_liftr_perfect; try by rewrite eq_sym.
by rewrite /srel /= eq_sym -p1Ep0 pDp1.
have [pEp0|/eqP pDp0] := p =P p0.
case: (so1_cor p1) => sDp0 sDp1.
apply: connect_trans (_ : connect _ ↑[`c[so1 p1]]_p1 _).
by apply/connect_liftr/IH.
apply: connect_trans (_ : connect _ ↑[`c[so1 p1]]_p _).
apply/connect1/move_liftr_perfect; try by rewrite eq_sym.
by rewrite /srel /= eq_sym pDp1 pEp0 muln0.
by rewrite eq_sym pEp0.
by apply/connect_liftr/IH.
apply: connect_trans (_ : connect _ ↑[`c[p]]_p1 _).
by apply/connect_liftr/IH.
apply: connect_trans (_ : connect _ ↑[`c[p]]_p0 _).
apply/connect1/move_liftr_perfect; try by rewrite eq_sym.
by rewrite /srel /= p1Dp0 muln0.
apply: connect_trans (_ : connect _ ↑[`c[p1]]_p0 _).
by apply/connect_liftr/IH.
apply: connect_trans (_ : connect _ ↑[`c[p1]]_p _).
apply/connect1/move_liftr_perfect; try by rewrite // eq_sym.
by rewrite /srel /= eq_sym pDp0.
by apply/connect_liftr/IH.
Qed.
Lemma shanoi_connect n (c1 c2 : configuration m.+3 n) : c1 `-->* c2.
Proof.
apply: connect_trans (shanoi_connect_perfect _ p0) _.
rewrite (connect_sym (@ssym m.+3)).
apply: shanoi_connect_perfect.
Qed.
End sHanoi.