-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfms_diag_averaging.F90
252 lines (188 loc) · 9.82 KB
/
fms_diag_averaging.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
!! \brief Contains OpenMP-based averaging routines
!!
!! \description This module for performssome statistical (e.g. average) operations
!! on data arrays. Typically, With the input array A being N-dimensioanl, an
!! (N-1)-dimensional array is calculated containing the averages for the Nth (righmost) dimension.
!! TODO: 1) Test the actual offloading. See "omp declare target" statement in the
!! 1D version and copy to tothers if works.
!! TODO 2) Test on alternate compiler and GPU
!! TODO 3) Determine loggin error policy (related to array allocation if any)
!! TODO 4) Delete all experimental subroutines
module fms_diag_averaging_mod
use omp_lib
implicit none
private get_average_1D, get_average_2D, get_average_3D, get_average_4D, &
get_average_5D, alloc_subarray_3D, alloc_subarray_4D
!!Interface for calculating the averages.
interface get_average
procedure get_average_1D, get_average_2D, get_average_3D, &
get_average_4D, get_average_5D
end interface
!Interface for allocating an array of one less dimention than the argument array.
!It is assumed the RHS dimention will is the one that will not be in the newly
!allocated (sub) array
interface alloc_subarray
procedure alloc_subarray_3D, alloc_subarray_4D
end interface
contains
!! Calculate the scalar average of the input 1D array
!! the_data: the input data
!! the_average : Scalar variable where the average is to be stored.
!! The averages that will be calculated are the_average(si_o : ei_o, sj_o : ej_o) if the
!! array index arguments are provided. Otherwise the indices will be determined from the
!! upper and lower bounds of the corresponding dimension of the array.
subroutine get_average_1D( the_data, the_average, st, et)
integer , optional, intent (in) :: st, et
real (kind = 8), intent(in) :: the_data (:)
real(kind=8), intent(in out) :: the_average
integer :: st_, et_, it
et_ = pr_or_alt(et, ubound (the_data,1))
st_ = pr_or_alt(st, lbound (the_data,1))
the_average= 0.0d0
!$opm declare target
!$omp parallel do reduction(+ : the_average)
do it = st_, et_
the_average = the_average + the_data( it)
end do
the_average = the_average / (et_ - st_ + 1)
end subroutine get_average_1D
!! Calculate the 1D array containing averages of the input 2D array
!! the_data: the input data
!! the_average : array where the averages are stored. Should have one dimension less the the_data.
!! The averages that will be calculated are the_average(si_o : ei_o, sj_o : ej_o) if the
!! array index arguments are provided. Otherwise the indices will be determined from the
!! upper and lower bounds of the corresponding dimension of the array.
subroutine get_average_2D( the_data, the_average, si, ei, st, et)
integer , optional, intent (in) :: si, ei, st, et
real (kind = 8), intent(in) :: the_data (:,:)
real(kind=8), intent(in out) :: the_average(:)
integer :: si_, ei_, st_, et_, it
et_ = pr_or_alt(et, ubound (the_data,2))
st_ = pr_or_alt(st, lbound (the_data,2))
ei_ = pr_or_alt(ei, ubound (the_data,1))
si_ = pr_or_alt(si, lbound (the_data,1))
the_average(si_:ei_)= 0.0d0
!$opm declare target
!$omp parallel do reduction(+ : the_average)
do it = st_, et_
the_average(si_:ei_) = the_average(si_:ei_) + the_data(si_:ei_, it)
end do
the_average(si_:ei_)= the_average(si_:ei_)/ (et_ - st_ + 1)
end subroutine get_average_2D
!! Calculate the 2D array containing averages of the input 3D array
!! the_data: the input data
!! the_average : array where the averages are stored. Should have one dimension less the the_data.
!! The averages that will be calculated are the_average(si_o : ei_o, sj_o : ej_o) if the
!! array index arguments are provided. Otherwise the indices will be determined from the
!! upper and lower bounds of the corresponding dimension of the array.
subroutine get_average_3D( the_data, the_average, si, ei, sj, ej, st, et)
integer , optional, intent (in) :: si, ei, sj, ej, st, et
real (kind = 8), intent(in) :: the_data (:,:,:)
real(kind=8), intent(in out) :: the_average(:,:)
integer :: si_, ei_, sj_, ej_, st_, et_, it
et_ = pr_or_alt(et, ubound (the_data,3))
st_ = pr_or_alt(st, lbound (the_data,3))
ej_ = pr_or_alt(ej, ubound (the_data,2))
sj_ = pr_or_alt(sj, lbound (the_data,2))
ei_ = pr_or_alt(ei, ubound (the_data,1))
si_ = pr_or_alt(si, lbound (the_data,1))
the_average(si_:ei_,sj_:ej_)= 0.0d0
!$opm declare target
!$omp parallel do reduction(+ : the_average)
do it = st_, et_
the_average(si_:ei_,sj_:ej_) = the_average(si_:ei_,sj_:ej_) + the_data(si_:ei_,sj_:ej_, it)
end do
the_average(si_:ei_,sj_:ej_)= the_average(si_:ei_,sj_:ej_)/ (et_ - st_ + 1)
end subroutine get_average_3D
!! Calculate the 3D array contaning averages of the input 4D array
!! the_data: the input data
!! the_average : array where the averages are stored. Should have one dimension less the the_data.
!! The averages that will be calculated are the_average(si_o : ei_o, sj_o : ej_o) if the
!! array index arguments are provided. Otherwise the indices will be determined from the
!! upper and lower bounds of the corresponding dimension of the array.
subroutine get_average_4D( the_data, the_average, si, ei, sj, ej, sk, ek, st, et)
integer , optional, intent (in) :: si, ei, sj, ej, sk, ek, st, et
real (kind = 8), intent(in) :: the_data (:,:,:,:)
real(kind=8), intent(in out) :: the_average(:,:,:)
integer :: si_, ei_, sj_, ej_, sk_, ek_, st_, et_, it
et_ = pr_or_alt(et, ubound (the_data,4))
st_ = pr_or_alt(st, lbound (the_data,4))
ek_ = pr_or_alt(ek, ubound (the_data,3))
sk_ = pr_or_alt(sk, lbound (the_data,3))
ej_ = pr_or_alt(ej, ubound (the_data,2))
sj_ = pr_or_alt(sj, lbound (the_data,2))
ei_ = pr_or_alt(ei, ubound (the_data,1))
si_ = pr_or_alt(si, lbound (the_data,1))
the_average(si_:ei_,sj_:ej_,sk_:ek_)= 0.0d0
!$opm declare target
!$omp parallel do reduction(+ : the_average)
do it = st_, et_
the_average(si_:ei_,sj_:ej_,sk_:ek_) = the_average(si_:ei_,sj_:ej_,sk_:ek_) &
+ the_data(si_:ei_,sj_:ej_,sk_:ek_, it)
end do
the_average(si_:ei_,sj_:ej_,sk_:ek_)= the_average(si_:ei_,sj_:ej_,sk_:ek_)/ (et_ - st_ + 1)
end subroutine get_average_4D
subroutine get_average_5D( the_data, the_average, si, ei, sj, ej, sk, ek, sl, el, st, et)
integer , optional, intent (in) :: si, ei, sj, ej, sk, ek, sl, el, st, et
real (kind = 8), intent(in) :: the_data (:,:,:,:,:)
real(kind=8), intent(in out) :: the_average(:,:,:,:)
integer :: si_, ei_, sj_, ej_, sk_, ek_, sl_, el_, st_, et_, it
et_ = pr_or_alt(et, ubound (the_data,5))
st_ = pr_or_alt(st, lbound (the_data,5))
el_ = pr_or_alt(el, ubound (the_data,4))
sl_ = pr_or_alt(sl, lbound (the_data,4))
ek_ = pr_or_alt(ek, ubound (the_data,3))
sk_ = pr_or_alt(sk, lbound (the_data,3))
ej_ = pr_or_alt(ej, ubound (the_data,2))
sj_ = pr_or_alt(sj, lbound (the_data,2))
ei_ = pr_or_alt(ei, ubound (the_data,1))
si_ = pr_or_alt(si, lbound (the_data,1))
the_average(si_:ei_,sj_:ej_,sk_:ek_,sl_:el_)= 0.0d0
!$opm declare target
!$omp parallel do reduction(+ : the_average)
do it = st_, et_
the_average(si_:ei_,sj_:ej_,sk_:ek_,sl_:el_) = the_average(si_:ei_,sj_:ej_,sk_:ek_,sl_:el_) &
+ the_data(si_:ei_,sj_:ej_,sk_:ek_,sl_:el_, it)
end do
the_average(si_:ei_,sj_:ej_,sk_:ek_,sl_:el_)= the_average(si_:ei_,sj_:ej_,sk_:ek_,sl_:el_)/ (et_ - st_ + 1)
end subroutine get_average_5D
!! Set result to argument xv if its present, otherwise to the alternate
function pr_or_alt(xv, alternate) result (xv_result)
integer , optional, intent (in) :: xv
integer , intent (in) :: alternate
integer :: xv_result
if(present(xv)) then
xv_result = xv
else
xv_result = alternate
end if
end function pr_or_alt
!!Determine the number of threads used durring offloading to GPU,
!!If a gpu is not available, return the number of cpu_threads to use
!!WARNIG: This function needs to be called within an "!$omp target ..."
function num_offloading_threads(cpu_num_threads) result (gpu_num_threads)
integer , intent(in) :: cpu_num_threads
logical (kind = 4) :: initial_device
integer :: gpu_num_threads
integer :: max_gpu_num_threads
gpu_num_threads = cpu_num_threads
max_gpu_num_threads = 1024
initial_device = omp_is_initial_device()
!!initial_device = .True.
if ((cpu_num_threads .ne. 0) .and. (initial_device .eqv. .False.)) then
gpu_num_threads = max_gpu_num_threads
end if
end function num_offloading_threads
subroutine alloc_subarray_3D( the_data, the_average)
real (kind = 8), intent(in) :: the_data (:,:,:)
real(kind=8), allocatable, intent(in out) :: the_average(:,:)
allocate (the_average(1:size(the_data,1), 1:size(the_data,2)))
!TODO: Determine allocation status
end subroutine alloc_subarray_3D
subroutine alloc_subarray_4D( the_data, the_average)
real (kind = 8), intent(in) :: the_data (:,:,:,:)
real(kind=8), allocatable, intent(in out) :: the_average(:,:,:)
allocate (the_average(1: size(the_data,1), 1: size(the_data,2), 1: size(the_data,3)))
!TODO: Determine allocation status
end subroutine alloc_subarray_4D
end module fms_diag_averaging_mod