-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathItemAndUserModel(train).py
224 lines (191 loc) · 8.39 KB
/
ItemAndUserModel(train).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import findspark
findspark.init()
findspark.find()
import itertools
import pyspark
import sys
import time
import json
from collections import defaultdict
from operator import add
from pyspark import SparkContext, SparkConf
from pyspark import SparkContext
from itertools import combinations
import random
def hash_value(j,i,Num_hash,signature_matrix,hashfunction,prime_num):
for k in range(Num_hash):
signature_matrix[k][j] = min(signature_matrix[k][j],(i*hashfunction[k][0]+hashfunction[k][1]) % prime_num)
return signature_matrix
def sign1(j,dict_business,Num_hash,signature_matrix,hashfunction,prime_num):
for i in dict_business[j]:
sign1=hash_value(j,i,Num_hash,signature_matrix,hashfunction,prime_num)
return signature_matrix
def Prime_check(x):
k=[False for i in range(2,x) if x%i==0]
if not k:
return True
else:
return False
def Candidate(data, c, r):
cand = []
d_s = []
dict1 = {}
data = list(data)
for i in range(c):
s_list = []
for j in range(r):
s_list.append(data[j][i])
d_s.append(data[j][i])
s_list = tuple(s_list)
if s_list not in dict1:
dict1[s_list] = []
dict1[s_list].append(i)
for values in dict1.items():
if len(values[1]) > 1:
cand.extend(list(combinations(values[1], 2)))
return iter(cand)
def pairCandidatesz(pairs):
list_1=dict_user[pairs[0]]
list_2=dict_user[pairs[1]]
result = list()
intersected=list(set(list_1) & set(list_2))
rated_intersection=len(intersected)
rated_union=len(set(list_1+list_2))
if rated_intersection >= 3 and rated_intersection / rated_union >= 0.01:
user1=reversed_uid[pairs[0]]
user2=reversed_uid[pairs[1]]
List_ratings1=[]
List_ratings2=[]
for items in intersected:
items=reversed_bid[items]
List_ratings1.append(utility_dict[items,user1])
List_ratings2.append(utility_dict[items,user2])
mean1=sum(List_ratings1)/len(List_ratings1)
mean2=sum(List_ratings2)/len(List_ratings2)
List_ratings1=[values-mean1 for values in List_ratings1]
List_ratings2=[values-mean2 for values in List_ratings2]
result.append(((user1, user2), (List_ratings1,List_ratings2)))
return result
def Pearson(ratings):
check1=ratings[0]
check2=ratings[1]
numerator=sum([x*y for x,y in zip(check1,check2)])
sum_den1=(sum([x**2 for x in check1]))**0.5
sum_den2=(sum([x**2 for x in check2]))**0.5
denominator=(sum_den1)*sum_den2
try:
if numerator / denominator > 0:
return numerator / denominator
except ZeroDivisionError:
return None
def valid_pairs(baskets, support, numofwhole):
sub_s = int(support*(len(baskets))/numofwhole)
check_dict = {}
for basket in baskets:
list_basket=list(basket)
list_basket.sort(key=lambda x:x[0])
for value1, value2 in combinations(list_basket, 2):
if tuple([value1[0],value2[0]]) in check_dict:
check_dict[tuple([value1[0],value2[0]])]+=[(value1[1],value2[1])]
else:
check_dict[tuple([value1[0],value2[0]])]=[(value1[1],value2[1])]
L=[]
for keys in check_dict.keys():
if len(check_dict[keys])>=sub_s:
L.append([keys,check_dict[keys]])
return L
def pearson_correlation(pairs):
list_pairs=list(pairs)
if len(list_pairs)==0:
return 0
item1_ratings=[pairs[0] for pairs in pairs]
item2_ratings=[pairs[1] for pairs in pairs]
mean_item1=sum(item1_ratings)/len(item1_ratings)
mean_item2=sum(item2_ratings)/len(item2_ratings)
check1=[item-mean_item1 for item in item1_ratings]
check2=[item-mean_item2 for item in item2_ratings]
numerator=sum([x*y for x,y in zip(check1,check2)])
sum_den1=(sum([x*y for x,y in zip(check1,check1)]))**0.5
sum_den2=(sum([x*y for x,y in zip(check2,check2)]))**0.5
denominator=(sum_den1)*sum_den2
if numerator==0 or denominator==0:
return 0
return numerator/denominator
if __name__ == "__main__":
if len(sys.argv)!=4:
print("This function needs 3 input arguments <case number> <support> <input_file_path> <output_file_path>")
sys.exit(1)
input_file=sys.argv[1]
outputfile=sys.argv[2]
condition = sys.argv[3]
conf = (
SparkConf()
.setAppName("your app name")
.set("spark.driver.memory", "4g")
.set("spark.executor.memory", "4g"))
sc = SparkContext(conf=conf)
#sc = SparkContext('local[*]','test')
time1=time.time()
reviews = sc.textFile(input_file).persist()
rdd=reviews.map(lambda x:json.loads(x))
if condition=='item_based':
reviews = sc.textFile(input_file).persist()
rdd=reviews.map(lambda x:json.loads(x))
ext_rdd=rdd.map(lambda x:(x['user_id'],(x['business_id'],x['stars'])))
test_reviews = sc.textFile('test_review.json').persist()
test_rdd=test_reviews.map(lambda x:json.loads(x))
test_rdd=test_rdd.map(lambda x:(x['user_id'],x['business_id']))
trainRDD_user = ext_rdd.groupByKey().mapValues(dict).collect()
UserDict = dict(trainRDD_user)
user_avg_rating=ext_rdd.map(lambda x:(x[0],x[1][1])).groupByKey().mapValues(list).map(lambda x:(x[0],sum(x[1])/len(x[1]))).collect()
avgsDict = dict(user_avg_rating)
overall_avg = ext_rdd.map(lambda row: row[1][1]).mean()
count_user=ext_rdd.map(lambda x:x[0]).distinct().count()
k=ext_rdd.groupByKey().map(lambda x:x[1]).mapPartitions(lambda x:valid_pairs(list(x),7,count_user))
pearson_corr_values=k.reduceByKey(add).mapValues(pearson_correlation)
final_rdd=pearson_corr_values.filter(lambda x:x[1]>0 and x[1]is not None)
final=final_rdd.map(lambda x: {"b1": x[0][0], "b2": x[0][1], "sim": x[1]})
with open(outputfile, 'w') as fp:
fp.writelines(json.dumps(t) + '\n' for t in final.collect())
if condition=='user_based':
check1=rdd.map(lambda x:(x['user_id'],x['business_id'],float(x['stars'])))
businessid_unique = check1.map(lambda x: (x[1])).distinct().collect()
businessid_count=len(businessid_unique)
business_dict={}
i=0
for ids in businessid_unique:
business_dict[ids]=i
i+=1
reversed_bid = {v : k for k, v in business_dict.items()}
uid_dict = dict(check1.map(lambda x: (x[0])).distinct().zipWithIndex().collect())
reversed_uid = {v : k for k, v in uid_dict.items()}
utility_dict = dict(check1.map(lambda x: ((x[1], x[0]), x[2])).groupByKey().mapValues(lambda l: sum(l) / len(l)).collect())
userid_unique = check1.map(lambda x: (x[0],x[1])).groupByKey().mapValues(set).collect()
userid_count=len(userid_unique)
dict_user = {}
for i in range(userid_count):
dict_user[i]=[]
for u in userid_unique[i][1]:
dict_user[i].append(business_dict[u])
prime_num=userid_count
while not Prime_check(prime_num):
prime_num += 1
Num_hash = 50
hashfunction = []
random.seed(10000)
for i in range(Num_hash):
hashfunction.append([random.randint(0, 10000), random.randint(0, 10000)])
signature_matrix = [[businessid_count for col in range(userid_count)] for row in range(Num_hash)]
row = 1
b = Num_hash / 1
for j in range(userid_count):
signature_matrix=sign1(j,dict_user,Num_hash,signature_matrix,hashfunction,prime_num)
sign_rdd = sc.parallelize(signature_matrix, b)
candidates = sign_rdd.mapPartitions(lambda x: Candidate(x, userid_count, row)).map(lambda x: (x, 1))
c=candidates.reduceByKey(lambda x, y: 1).map(lambda x: x[0])
li=c.flatMap(pairCandidatesz).mapValues(Pearson).filter(lambda x:x[1] is not None).map(lambda x: {"u1" : x[0][0], "u2" : x[0][1], "sim" : (x[1])}) \
.filter(lambda x: x["sim"])
with open(outputfile, 'w') as fp:
fp.writelines(json.dumps(t) + '\n' for t in li.collect())
Duration=time.time()-time1
print('Duration:',Duration)