-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Closed
Description
๐๐๐๐๐๐
Thank you for your outstanding work!!!, details about this issue as follows:
-
Description:
Iโm using the Autoformer implementation undermodels/Autoformer
to predict theETT-small/ETTh1.csv
dataset. Since thereโs no hyperparameter search provided, I directly ran the bash script under the scripts folder. However, I noticed a significant gap in the results when using an input length of 96 to predict 720 steps (MSE: 0.587), compared to the reported result in the original paper (MSE: 0.498). -
Questions:
- Are there specific configurations or hyperparameter adjustments needed to reproduce the paperโs results?
- Do you plan to include standard hyperparameter searches in the future to help bridge performance gaps, or do you have suggestions for tuning the library to achieve better results?
- Result Description:
long_term_forecast_ETTh1_96_96_Autoformer_ETTh1_ftM_sl96_ll48_pl24_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.37013882398605347, mae:0.42097944021224976, dtw:Not calculated
long_term_forecast_ETTh1_96_336_Autoformer_ETTh1_ftM_sl96_ll48_pl168_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.5342859625816345, mae:0.49671873450279236, dtw:Not calculated
long_term_forecast_ETTh1_96_24_Autoformer_ETTh1_ftM_sl96_ll48_pl24_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.37013882398605347, mae:0.42097944021224976, dtw:Not calculated
long_term_forecast_ETTh1_96_48_Autoformer_ETTh1_ftM_sl96_ll48_pl48_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.3968711197376251, mae:0.4279240369796753, dtw:Not calculated
long_term_forecast_ETTh1_96_168_Autoformer_ETTh1_ftM_sl96_ll48_pl168_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.5342862010002136, mae:0.4967191219329834, dtw:Not calculated
long_term_forecast_ETTh1_96_336_Autoformer_ETTh1_ftM_sl96_ll48_pl336_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.5114971995353699, mae:0.49485111236572266, dtw:Not calculated
long_term_forecast_ETTh1_96_720_Autoformer_ETTh1_ftM_sl96_ll48_pl720_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0
mse:0.586983859539032, mae:0.5547620058059692, dtw:Not calculated`
- Logs:
Using GPU
Args in experiment:
Namespace(task_name='long_term_forecast', is_training=1, model_id='ETTh1_96_720', model='Autoformer', data='ETTh1', root_path='./dataset/ETT-small/', data_path='ETTh1.csv', features='M', target='OT', freq='h', checkpoints='./checkpoints/', seq_len=96, label_len=48, pred_len=720, seasonal_patterns='Monthly', inverse=False, expand=2, d_conv=4, top_k=5, num_kernels=6, enc_in=7, dec_in=7, c_out=7, d_model=512, n_heads=8, e_layers=2, d_layers=1, d_ff=2048, moving_avg=25, factor=3, distil=True, dropout=0.1, embed='timeF', activation='gelu', channel_independence=1, decomp_method='moving_avg', use_norm=1, down_sampling_layers=0, down_sampling_window=1, down_sampling_method=None, seg_len=96, num_workers=10, itr=1, train_epochs=10, batch_size=32, patience=3, learning_rate=0.0001, des='Exp', loss='MSE', lradj='type1', use_amp=False, use_gpu=True, gpu=0, gpu_type='cuda', use_multi_gpu=False, devices='0,1,2,3', p_hidden_dims=[128, 128], p_hidden_layers=2, use_dtw=False, augmentation_ratio=0, seed=2, jitter=False, scaling=
Use GPU: cuda:0
>>>>>>>start training : long_term_forecast_ETTh1_96_720_Autoformer_ETTh1_ftM_sl96_ll48_pl720_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0>>>>>>>>>>>>>>>>>>>>>>>>>>
train 7825
val 2161
test 2161
iters: 100, epoch: 1 | loss: 0.5048556
speed: 0.2038s/iter; left time: 479.0261s
iters: 200, epoch: 1 | loss: 0.5594337
speed: 0.1837s/iter; left time: 413.4543s
Epoch: 1 cost time: 45.83665156364441
Epoch: 1, Steps: 245 | Train Loss: 0.6220744 Vali Loss: 1.7238371 Test Loss: 0.5491471 Peak Memory: 6193.65 MB
Validation loss decreased (inf --> 1.723837). Saving model ...
Updating learning rate to 0.0001
iters: 100, epoch: 2 | loss: 0.5470211
speed: 0.5258s/iter; left time: 1107.2467s
iters: 200, epoch: 2 | loss: 0.5807275
speed: 0.1828s/iter; left time: 366.7448s
Epoch: 2 cost time: 45.278279304504395
Epoch: 2, Steps: 245 | Train Loss: 0.5600557 Vali Loss: 1.7011523 Test Loss: 0.5873765 Peak Memory: 6193.65 MB
Validation loss decreased (1.723837 --> 1.701152). Saving model ...
Updating learning rate to 5e-05
iters: 100, epoch: 3 | loss: 0.4777997
speed: 0.5231s/iter; left time: 973.5513s
iters: 200, epoch: 3 | loss: 0.4350199
speed: 0.1828s/iter; left time: 321.9951s
Epoch: 3 cost time: 45.362247705459595
Epoch: 3, Steps: 245 | Train Loss: 0.4881297 Vali Loss: 1.8302903 Test Loss: 0.6512775 Peak Memory: 6193.65 MB
EarlyStopping counter: 1 out of 3
Updating learning rate to 2.5e-05
iters: 100, epoch: 4 | loss: 0.4568125
speed: 0.5268s/iter; left time: 851.3388s
iters: 200, epoch: 4 | loss: 0.4054065
speed: 0.1822s/iter; left time: 276.2789s
Epoch: 4 cost time: 45.10278296470642
Epoch: 4, Steps: 245 | Train Loss: 0.4523836 Vali Loss: 1.8280600 Test Loss: 0.6942503 Peak Memory: 6193.65 MB
EarlyStopping counter: 2 out of 3
Updating learning rate to 1.25e-05
iters: 100, epoch: 5 | loss: 0.4479555
speed: 0.5277s/iter; left time: 723.5420s
iters: 200, epoch: 5 | loss: 0.4255082
speed: 0.1838s/iter; left time: 233.5750s
Epoch: 5 cost time: 45.26950550079346
Epoch: 5, Steps: 245 | Train Loss: 0.4344996 Vali Loss: 1.8271523 Test Loss: 0.6992639 Peak Memory: 6193.65 MB
EarlyStopping counter: 3 out of 3
Early stopping
>>>>>>>testing : long_term_forecast_ETTh1_96_720_Autoformer_ETTh1_ftM_sl96_ll48_pl720_dm512_nh8_el2_dl1_df2048_expand2_dc4_fc3_ebtimeF_dtTrue_Exp_0<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
test 2161
test shape: (2161, 720, 7) (2161, 720, 7)
test shape: (2161, 720, 7) (2161, 720, 7)
mse:0.586983859539032, mae:0.5547620058059692, dtw:Not calculated
swanlab: Experiment Autoformer/ETTh1_96_720 has completed
Metadata
Metadata
Assignees
Labels
No labels