Skip to content

[性能优化]vali部分将criterion的计算放在GPU上 #752

@giansha

Description

@giansha

去掉.detach().cpu(),将criterion的计算放在GPU上:
原始:

 def vali(self, vali_data, vali_loader, criterion):

    total_loss = []
    self.model.eval()
    with torch.no_grad():
        for i, (batch_x, _) in enumerate(vali_loader):
            batch_x = batch_x.float().to(self.device)

            outputs = self.model(batch_x, None, None, None)

            f_dim = -1 if self.args.features == 'MS' else 0
            outputs = outputs[:, :, f_dim:]
            pred = outputs.detach().cpu()
            true = batch_x.detach().cpu()

            loss = criterion(pred, true)
            total_loss.append(loss)
    total_loss = np.average(total_loss)
    self.model.train()
    return total_loss

改为:

 def vali(self, vali_data, vali_loader, criterion):

           .....
            pred = outputs
            true = batch_x

            loss = criterion(pred, true)
            total_loss.append(loss.cpu())
    total_loss = np.average(total_loss)
    self.model.train()
    return total_loss

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions