-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp2-analysis.R
279 lines (221 loc) · 13.7 KB
/
exp2-analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
library(TeachingDemos)
# txtStart("exp2-analysis-output.txt")
# Your code
#txtStop()
library(aod)
library(Rcpp)
library(rms)
library(lme4) #for model
library(dplyr)
library(plyr)
library(reshape) #for melt
library(ggplot2) #for plots
library(ggrepel)
library(effects) #for getting predicted means and associated CIs from the model
library(lsmeans) #for getting contrasts and associated CIs from the model
library(sciplot)
library(gridExtra) #grid.table applied to df2 yields a table
library(xtable) #for LaTeX code
library(binom) #for calculating binomial confidence intervals
#(which can however be obtained more easily from a model with the effects package)
#Define 2 colors for ModType plots, 4 colors for Mod plots:
colors.2 <- c("#B3CDE3", "#FBB4AE")
colors.4 <- c("#B3CDE3", "#4f8bbe", "#FBB4AE", "#f42a18")
#Set working directory:
setwd("/home/dora/Dropbox/Academic/Research/2020-09-16-18 ELM 1 online (a) Superlative-modified numerals and negation: A negotiable cost/paper/")
#Load data in wide format. Melt into long format:
df2.wide <- read.csv('exp2-results-wide.csv', header = T)
head(df2.wide, n = 10)
df2 <- melt(df2.wide)
df2 <- tbl_df2(df2)
df2
names(df2)[names(df2) == "variable"] <- "Participant"
names(df2)[names(df2) == "value"] <- "Response"
df2$Response <- factor(df2$Response)
df2
str(df2)
df2 <- select(df2, Participant, ModMon, ModType, Mod, Pol1, Pol2, Env, Response)
df2$Env<- factor(df2$Env, levels=c('AntCond','RestUniv'))
df2$Pol1<- factor(df2$Pol1, levels=c('Pos','Neg'))
df2$Pol2 <- factor(df2$Pol2, levels=c('Pos','Neg'))
df2$ModType <- factor(df2$ModType, levels=c('Comp','Sup'))
df2$ModMon<-factor(df2$ModMon, levels=c('UE','DE'))
df2$Mod<-factor(df2$Mod, levels=c('MoreThan','LessThan', 'AtLeast','AtMost'))
levels(df2$Env)
levels(df2$Pol1)
levels(df2$Pol2)
levels(df2$ModType)
levels(df2$ModMon)
levels(df2$Mod)
str(df2)
#Calculate binomial confidence intervals directly from the raw means, using the binom package:
#- Select factors of interest .
#- Get Mean, Successes (counts of 1), Count (total number of responses).
#- These will be summarized over Participant and Response for combinations of the factors of interest.
# By Mod.
df2.mod.msc <- ddply(df2, c('Env', 'Pol1', 'Pol2', 'Mod'), summarize,
Mean = mean(as.numeric(as.character(Response))),
Successes = sum(as.numeric(as.character(Response))),
Count = length(Response)
)
df2.mod.msc
CIs <- binom.confint(x=df2.mod.msc$Successes, n=df2.mod.msc$Count, methods="wilson")
CIs
df2.mod.mscci <- cbind(df2.mod.msc, CIs[,5:6])
df2.mod.mscci
#This can be used to generate a table with the raw means and their associated 95% binomial CIs.
#First, extract Env, Pol, Mod, Mean, lower, and upper.
df2.mod.mscci.latex <-select(df2.mod.mscci, Env, Pol1, Pol2, Mod, Mean, lower, upper)
df2.mod.mscci.latex
#Second, print to LaTeX table, with lower and upper rounded.
xtable(df2.mod.mscci.latex) #Digits for lower and upper automatically rounded to two decimal places.
#Done!
df2.mod.mscci$Pol1Pol2 <- interaction(df2.mod.mscci$Pol1, df2.mod.mscci$Pol2, drop = TRUE) #drop unused levels
levels(df2.mod.mscci$Pol1Pol2)
df2.mod.mscci$Pol1Pol2 <- factor(df2.mod.mscci$Pol1Pol2, levels=c('Pos.Pos','Pos.Neg','Neg.Pos','Neg.Neg'))
levels(df2.mod.mscci$Pol1Pol2)
str(df2.mod.mscci)
#Now, let's plot the raw means and their associated CIs.
ggplot(df2.mod.mscci, aes(x=Pol1Pol2, y=Mean, fill=Mod)) +
facet_wrap(~ Env) +
geom_bar(position=position_dodge(width = .9), stat="identity",colour="black",size=.25) +
geom_errorbar(aes(ymin=lower, ymax=upper),
width=.4,position=position_dodge(.9),size=.33) +
# ylim(c(0,1)) +
scale_y_continuous(breaks=seq(0,1,0.2), minor_breaks = seq(0, 1, 0.02)) + #draws major (minor) y ticks at 0.2 (0.02) intervals
xlab("") +
ylab("Mean rating") +
theme_bw() +
# geom_text(aes(label = round(Mean, digits = 2)), size = 4, position = position_dodge(1), vjust=-.45) + #prints mean above each bar
theme(text = element_text(size=17)) + #makes label size 15
theme(legend.position="bottom", legend.title = element_blank()) +
scale_fill_manual(values=colors.4) +
ggsave("exp2-mod-raw.png", width=10, height=4, dpi=300)
#A plot with y in intervals of .25 and which prints the means above the bars:
ggplot(df2.mod.mscci, aes(x=Pol1Pol2, y=Mean, fill=Mod)) +
facet_wrap(~ Env) +
geom_bar(position=position_dodge(width = .9), stat="identity",colour="black",size=.25) +
geom_errorbar(aes(ymin=lower, ymax=upper),
width=.4,position=position_dodge(.9),size=.33) +
ylim(c(0,1)) +
# scale_y_continuous(breaks=seq(0,1,0.2), minor_breaks = seq(0, 1, 0.02)) + #draws major (minor) y ticks at 0.2 (0.02) intervals
xlab("") +
ylab("Mean rating") +
theme_bw() +
geom_text(aes(label = round(Mean, digits = 2)), size = 4, position = position_dodge(1), vjust=-.45) + #prints mean above each bar
theme(text = element_text(size=17)) + #makes label size 15
theme(legend.position="bottom", legend.title = element_blank()) +
scale_fill_manual(values=colors.4) +
ggsave("exp2-mod-raw-withprintedmeans.png", width=10, height=4, dpi=300)
# Fit logistic mixed-effects models.
# Fixed effects -- all the main factors of interest.
# Random effects -- intercept for Participant; random slopes -- the maximal we can fit in a principled way (no interactions, all 2-way, all3-way).
# Random slope:
# Without: converges in 1 minute.
# With (1+ (ModMon + ModType + Pol1 + Pol2 + Env)|Participant): Didn't use to converge but now converges in <7 mins, though with isSingular warning. Can use.
# With (1+ (ModMon + ModType + Pol1 + Pol2 + Env)^2|Participant): Was still running after 40 mins. Not sure if it will converge.
df2.model <- glmer(Response ~ ModMon * ModType * Pol1 * Pol2 * Env + (1+ (ModMon + ModType + Pol1 + Pol2 + Env)|Participant),
family = 'binomial',
data=df2,
control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)))
summary(df2.model, corr=FALSE)
# Get model results in LaTeX form.
xtable(coef(summary(df2.model)), digits=c(0,2,2,3,4))
# # If desired, get and plot predicted marginal mean probabilities for each group, with associated confidence intervals.
# # effects package
#
# df2.modmon.modtype.eff <- allEffects(df2.model)
# #eff
# #plot(eff) #quick and dirty plot
# df2.modmon.modtype.eff_df2 <- as.data.frame(df2.modmon.modtype.eff[["ModMon:ModType:Pol1:Pol2:Env"]])
#
# df2.modmon.modtype.eff_df2
# # "lower/upper" are the 95% CIs for the predicted marginal mean probabilities for each group
#
# #Get summary in LaTeX form, with values rounded off in all numerical columns.
# df2.modmon.modtype.eff_df2 %>%
# mutate_if(is.numeric, funs(round(., 2))) %>%
# select(., Env, Pol1, Pol2, ModMon, ModType, fit, se, lower, upper) %>%
# xtable() %>%
# print(., include.rownames=FALSE)
#
# str(df2.modmon.modtype.eff_df2)
#
# Plot as usual to get predicted means and their associated CIs.
# Otherwise, proceed to extract predicted contrasts with lsmeans.
# In contr, use adjust = "holm".
# If too many comparisons, use adjust = "none", then adjust later in contr after filtering for the contrasts of interest.
#Contrasts between ModTypes, by ModMon.
# Get contrasts between Comp and Sup by Env at specific levels of Pol1, Pol2, and ModMon.
# Warning: Results may be misleading due to involvement in interactions.
# # First method: Just replace " " in first line here:
# df2.model %>%
# lsmeans(., specs = ~ ModType | Env, at = list(Pol1 = "Pos", Pol2 ="Pos", ModMon="UE"), type = "response") %>%
# lsmeans::contrast(., method = "pairwise") %>%
# rbind(., adjust="holm") %>%
# summary(., infer=TRUE) %>%
# select(., Env, contrast, odds.ratio, asymp.LCL, asymp.UCL, z.ratio, p.value) %>%
# xtable(., digits=c(0,0,0,2,2,2,3,4)) %>%
# print(., include.rownames=FALSE)
# Second method: Just run the lines for the relevant combo, then collate, then print to LaTeX.
df2.means.between.1 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Pos", Pol2 ="Pos", ModMon="UE"), type = "response")
df2.contr.between.1 <- summary(rbind(lsmeans::contrast(df2.means.between.1, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.2 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Pos", Pol2 ="Pos", ModMon="DE"), type = "response")
df2.contr.between.2 <- summary(rbind(lsmeans::contrast(df2.means.between.2, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.3 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Pos", Pol2 ="Neg", ModMon="UE"), type = "response")
df2.contr.between.3 <- summary(rbind(lsmeans::contrast(df2.means.between.3, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.4 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Pos", Pol2 ="Neg", ModMon="DE"), type = "response")
df2.contr.between.4 <- summary(rbind(lsmeans::contrast(df2.means.between.4, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.5 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Neg", Pol2 ="Pos", ModMon="UE"), type = "response")
df2.contr.between.5 <- summary(rbind(lsmeans::contrast(df2.means.between.5, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.6 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Neg", Pol2 ="Pos", ModMon="DE"), type = "response")
df2.contr.between.6 <- summary(rbind(lsmeans::contrast(df2.means.between.6, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.7 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Neg", Pol2 ="Neg", ModMon="UE"), type = "response")
df2.contr.between.7 <- summary(rbind(lsmeans::contrast(df2.means.between.7, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.between.8 <- lsmeans(df2.model, specs = ~ ModType | Env, at = list(Pol1 = "Neg", Pol2 ="Neg", ModMon="DE"), type = "response")
df2.contr.between.8 <- summary(rbind(lsmeans::contrast(df2.means.between.8, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.contr.between.8
df2.contr.between <-rbind(df2.contr.between.1, df2.contr.between.2, df2.contr.between.3, df2.contr.between.4, df2.contr.between.5, df2.contr.between.6, df2.contr.between.7, df2.contr.between.8)
df2.contr.between %>%
select(., Env, contrast, odds.ratio, asymp.LCL, asymp.UCL, z.ratio, p.value) %>%
xtable(., digits=c(0,0,0,2,2,2,3,4))
# %>%
# print(., include.rownames=FALSE)
#Contrasts within ModTypes, by ModMon.
# Get contrasts between levels of Pol2 by Env for Pol1 = Neg for each Mod.
# Warning: Results may be misleading due to involvement in interactions.
# The model results did not reveal any significant interaction.
# Still, such interactions are likely to exist, so we'll take the results provisionally rather than definitively.
# First method: Just replace " " in first line here:
# df2.model %>%
# lsmeans(., specs = ~ Pol2 | Env, at = list(Pol1 = "Pos", ModType="Comp",ModMon="UE"), type = "response") %>%
# lsmeans::contrast(., method = "pairwise") %>%
# rbind(., adjust="holm") %>%
# summary(., infer=TRUE) %>%
# select(., Env, contrast, odds.ratio, asymp.LCL, asymp.UCL, z.ratio, p.value) %>%
# xtable(., digits=c(0,0,0,2,2,2,3,4)) %>%
# print(., include.rownames=FALSE)
# Second method: Just run the lines for the relevant combo, then collate, then print to LaTeX.
df2.means.within.1 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Pos", ModType="Comp",ModMon="UE"), type = "response")
df2.contr.within.1 <- summary(rbind(lsmeans::contrast(df2.means.within.1, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.2 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Pos", ModType="Comp",ModMon="DE"), type = "response")
df2.contr.within.2 <- summary(rbind(lsmeans::contrast(df2.means.within.2, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.3 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Pos", ModType="Sup",ModMon="UE"), type = "response")
df2.contr.within.3 <- summary(rbind(lsmeans::contrast(df2.means.within.3, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.4 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Pos", ModType="Sup",ModMon="DE"), type = "response")
df2.contr.within.4 <- summary(rbind(lsmeans::contrast(df2.means.within.4, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.5 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Neg", ModType="Comp",ModMon="UE"), type = "response")
df2.contr.within.5 <- summary(rbind(lsmeans::contrast(df2.means.within.5, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.6 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Neg", ModType="Comp",ModMon="DE"), type = "response")
df2.contr.within.6 <- summary(rbind(lsmeans::contrast(df2.means.within.6, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.7 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Neg", ModType="Sup",ModMon="UE"), type = "response")
df2.contr.within.7 <- summary(rbind(lsmeans::contrast(df2.means.within.7, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.means.within.8 <- lsmeans(df2.model, specs = ~ Pol2 | Env, at = list(Pol1 = "Neg", ModType="Sup",ModMon="DE"), type = "response")
df2.contr.within.8 <- summary(rbind(lsmeans::contrast(df2.means.within.8, method = "pairwise"), adjust = "holm"), infer = TRUE)
df2.contr.within.8
df2.contr.within <-rbind(df2.contr.within.1, df2.contr.within.2, df2.contr.within.3, df2.contr.within.4, df2.contr.within.5, df2.contr.within.6, df2.contr.within.7, df2.contr.within.8)
df2.contr.within %>%
select(., Env, contrast, odds.ratio, asymp.LCL, asymp.UCL, z.ratio, p.value) %>%
xtable(., digits=c(0,0,0,2,2,2,3,4))
# %>%
# print(., include.rownames=FALSE)