forked from siphomateke/PyBOW
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathparams.py
127 lines (81 loc) · 4.8 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
################################################################################
# functionality: parameter settings for detection algorithm training/testing
# This version: (c) 2018 Toby Breckon, Dept. Computer Science, Durham University, UK
# License: MIT License
# Origin acknowledgements: forked from https://github.com/siphomateke/PyBOW
################################################################################
import cv2
import os
################################################################################
# settings for datsets in general
master_path_to_dataset = "/tmp/pedestrian"; # ** need to edit this **
# data location - training examples
DATA_training_path_neg = os.path.join(master_path_to_dataset,"INRIAPerson/Train/neg/");
DATA_training_path_pos = os.path.join(master_path_to_dataset,"INRIAPerson/train_64x128_H96/pos/");
# data location - testing examples
DATA_testing_path_neg = os.path.join(master_path_to_dataset,"INRIAPerson/Test/neg/");
DATA_testing_path_pos = os.path.join(master_path_to_dataset,"INRIAPerson/test_64x128_H96/pos/");
# size of the sliding window patch / image patch to be used for classification
# (for larger windows sizes, for example from selective search - resize the
# window to this size before feature descriptor extraction / classification)
DATA_WINDOW_SIZE = [64, 128];
# the maximum left/right, up/down offset to use when generating samples for training
# that are centred around the centre of the image
DATA_WINDOW_OFFSET_FOR_TRAINING_SAMPLES = 3;
# number of sample patches to extract from each negative training example
DATA_training_sample_count_neg = 10;
# number of sample patches to extract from each positive training example
DATA_training_sample_count_pos = 5;
# class names - N.B. ordering of 0, 1 for neg/pos = order of paths
DATA_CLASS_NAMES = {
"other": 0,
"pedestrian": 1
}
################################################################################
# settings for BOW - Bag of (visual) Word - approaches
BOW_SVM_PATH = "svm_bow.xml"
BOW_DICT_PATH = "bow_dictionary.npy"
BOW_dictionary_size = 512; # in general, larger = better performance, but potentially slower
BOW_SVM_kernel = cv2.ml.SVM_RBF; # see opencv manual for other options
BOW_SVM_max_training_iterations = 500; # stop training after max iterations
BOW_clustering_iterations = 20; # reduce to improve speed, reduce quality
BOW_fixed_feature_per_image_to_use = 100; # reduce to improve speed, set to 0 for variable number
# specify the type of feature points to use])
# -- refer to the OpenCV manual for options here, by default this is set to work on
# --- all systems "out of the box" rather than using the best available option
BOW_use_ORB_always = False; # set to True to always use ORB over SIFT where available
try:
if BOW_use_ORB_always:
print("Forced used of ORB features, not SIFT")
raise Exception('force use of ORB')
DETECTOR = cv2.xfeatures2d.SIFT_create(nfeatures=BOW_fixed_feature_per_image_to_use) # -- requires extra modules and non-free build flag
# DETECTOR = cv2.xfeatures2d.SURF_create(nfeatures=BOW_fixed_feature_per_image_to_use) # -- requires extra modules and non-free build flag
# as SIFT/SURF feature descriptors are floating point use KD_TREE approach
_algorithm = 0 # FLANN_INDEX_KDTREE
_index_params = dict(algorithm=_algorithm, trees=5)
_search_params = dict(checks=50)
except:
DETECTOR = cv2.ORB_create(nfeatures=BOW_fixed_feature_per_image_to_use) # check these params
#if using ORB points
# taken from: https://docs.opencv.org/3.3.0/dc/dc3/tutorial_py_matcher.html
# N.B. "commented values are recommended as per the docs,
# but it didn't provide required results in some cases"
# as SIFT/SURF feature descriptors are integer use HASHING approach
_algorithm = 6 # FLANN_INDEX_LSH
_index_params= dict(algorithm = _algorithm,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
_search_params = dict(checks=50)
if (not(BOW_use_ORB_always)):
print("Falling back to using features: ", DETECTOR.__class__())
BOW_use_ORB_always = True; # set this as a flag we can check later which data type to uses
print("For BOW - features in use are: ", DETECTOR.__class__(), "(ignore for HOG)")
# based on choice and availability of feature points, set up KD-tree matcher
MATCHER = cv2.FlannBasedMatcher(_index_params, _search_params)
################################################################################
# settings for HOG approaches
HOG_SVM_PATH = "svm_hog.xml"
HOG_SVM_kernel = cv2.ml.SVM_LINEAR; # see opencv manual for other options
HOG_SVM_max_training_iterations = 500; # stop training after max iterations
################################################################################