-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrp_plot.py
214 lines (156 loc) · 6.9 KB
/
rp_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# PLOTTING FUNCTIONS for RP_EXTRACT features and Audio Waveforms
# 2015-04 by Thomas Lidy and Alexander Schindler
import numpy as np
from numpy.lib import stride_tricks
import matplotlib.pyplot as plt
def plotmatrix(features,xlabel=None,ylabel=None):
plt.figure()
plt.imshow(features, origin='lower', aspect='auto', interpolation='nearest', cmap='jet')
if xlabel: plt.xlabel(xlabel)
if ylabel: plt.ylabel(ylabel)
plt.show()
# alternate version using pcolor
# from pylab import pcolor, show, colorbar, xticks, yticks
#def plotmatrix2(features):
#pcolor(features)
# #colorbar()
# #yticks(arange(0.5,10.5),range(0,10))
# #xticks(arange(0.5,10.5),range(0,10))
#show()
def plotrp(features, reshape=True, rows=24, cols=60):
if reshape:
features = features.reshape(rows, cols, order='F')
plotmatrix(features,'Modulation Frequency Index','Frequency Band [Bark]')
def plotssd(features, reshape=True, rows=24, cols=7):
if reshape:
features = features.reshape(rows, cols, order='F')
plt.figure()
plt.imshow(features, origin='lower', aspect='auto', interpolation='nearest', cmap='jet')
plt.xticks(range(0, cols), ['mean', 'var', 'skew', 'kurt', 'median', 'min', 'max'])
plt.ylabel('Frequency [Bark]')
plt.show()
def plotrh(hist,showbpm=True):
xrange = range(0, hist.shape[0])
plt.bar(xrange, hist) # 50, normed=1, facecolor='g', alpha=0.75)
plt.title('Rhythm Histogram')
if showbpm:
mod_freq_res = 1.0 / (2**18/44100.0)
plot_index = range(0, hist.shape[0] + 1, 5) # 5 = step for xticks
plot_base = np.array(plot_index) + 1 # + 1 otherwise we start we 0 bpm
bpm = np.around(plot_base * mod_freq_res * 60, 0).astype(int) # integer for legend
plt.xticks(plot_index, bpm)
plt.xlabel('bpm')
else:
plt.xlabel('Mod. Frequency Index')
plt.show()
def plotmono_waveform(samples, plot_width=6, plot_height=4):
fig = plt.figure(num=None, figsize=(plot_width, plot_height), dpi=72, facecolor='w', edgecolor='k')
if len(samples.shape) > 1:
# if we have more than 1 channel, build the average
samples_to_plot = samples.copy().mean(axis=1)
else:
samples_to_plot = samples
channel_1 = fig.add_subplot(111)
channel_1.set_ylabel('Channel 1')
#channel_1.set_xlim(0,song_length) # todo
channel_1.set_ylim(-1, 1)
channel_1.plot(samples_to_plot)
plt.show();
plt.clf();
def plotstereo_waveform(samples, plot_width=6, plot_height=5):
fig = plt.figure(num=None, figsize=(plot_width, plot_height), dpi=72, facecolor='w', edgecolor='k')
channel_1 = fig.add_subplot(211)
channel_1.set_ylabel('Channel 1')
#channel_1.set_xlim(0,song_length) # todo
channel_1.set_ylim(-1, 1)
channel_1.plot(samples[:, 0])
channel_2 = fig.add_subplot(212)
channel_2.set_ylabel('Channel 2')
channel_2.set_xlabel('Time (s)')
channel_2.set_ylim(-1, 1)
#channel_2.set_xlim(0,song_length) # todo
channel_2.plot(samples[:, 1])
plt.show();
plt.clf();
def plot_waveform(samples, plot_width=6, plot_height=4):
# mono wave data is either only 1dim in shape or has a 2dim shape with 1 channel only
if (len(samples.shape) == 1) or (samples.shape[1] == 1):
print "Plotting Mono"
plotmono_waveform(samples, plot_width, plot_height)
else:
print "Plotting Stereo"
plotstereo_waveform(samples, plot_width, plot_height)
""" scale frequency axis logarithmically """
def logscale_spec(spec, sr=44100, factor=20.):
timebins, freqbins = np.shape(spec)
scale = np.linspace(0, 1, freqbins) ** factor
scale *= (freqbins - 1) / max(scale)
scale = np.unique(np.round(scale))
# create spectrogram with new freq bins
newspec = np.complex128(np.zeros([timebins, len(scale)]))
for i in range(0, len(scale)):
if i == len(scale) - 1:
newspec[:, i] = np.sum(spec[:, scale[i]:], axis=1)
else:
newspec[:, i] = np.sum(spec[:, scale[i]:scale[i + 1]], axis=1)
# list center freq of bins
allfreqs = np.abs(np.fft.fftfreq(freqbins * 2, 1. / sr)[:freqbins + 1])
freqs = []
for i in range(0, len(scale)):
if i == len(scale) - 1:
freqs += [np.mean(allfreqs[scale[i]:])]
else:
freqs += [np.mean(allfreqs[scale[i]:scale[i + 1]])]
return newspec, freqs
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
# cols for windowing
cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(samples, shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
def plotstft(samples, samplerate, binsize=2 ** 10, plotpath=None, colormap="jet", ax=None, fig=None, plot_width=6,
plot_height=4, ignore=False):
if ignore:
import warnings
warnings.filterwarnings('ignore')
s = stft(samples, binsize)
sshow, freq = logscale_spec(s, factor=1.0, sr=samplerate)
ims = 20. * np.log10(np.abs(sshow) / 10e-6) # amplitude to decibel
timebins, freqbins = np.shape(ims)
if ax is None:
fig, ax = plt.subplots(1, 1, sharey=True, figsize=(plot_width, plot_height))
#ax.figure(figsize=(15, 7.5))
cax = ax.imshow(np.transpose(ims), origin="lower", aspect="auto", cmap=colormap, interpolation="none")
#cbar = fig.colorbar(cax, ticks=[-1, 0, 1], cax=ax)
#ax.set_colorbar()
ax.set_xlabel("time (s)")
ax.set_ylabel("frequency (hz)")
ax.set_xlim([0, timebins - 1])
ax.set_ylim([0, freqbins])
xlocs = np.float32(np.linspace(0, timebins - 1, 5))
ax.set_xticks(xlocs, ["%.02f" % l for l in ((xlocs * len(samples) / timebins) + (0.5 * binsize)) / samplerate])
ylocs = np.int16(np.round(np.linspace(0, freqbins - 1, 10)))
ax.set_yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])
if plotpath:
plt.savefig(plotpath, bbox_inches="tight")
else:
plt.show()
#plt.clf();
b = ["%.02f" % l for l in ((xlocs * len(samples) / timebins) + (0.5 * binsize)) / samplerate]
return xlocs, b, timebins
# PLOTTING EXAMPLES
## This is how to RESHAPE in case needed
# rpf = feat["rp"].reshape(24,60,order='F') # order='F' means Fortran compatible; Alex uses it in rp_extract flatten() to be Matlab compatible
# print rpf.shape
# plotmatrix(rpf)
# ssd = feat["ssd"].reshape(24,7,order='F') # order='F' means Fortran compatible; Alex uses it in rp_extract flatten() to be Matlab compatible
# print ssd.shape
# plotssd(ssd)
# plotrh(feat["rh"])