Skip to content

Commit 002243e

Browse files
committed
Updated material on NNX
1 parent 1161347 commit 002243e

17 files changed

+1398
-475
lines changed

README.md

+14-15
Original file line numberDiff line numberDiff line change
@@ -77,30 +77,30 @@ Slides for the lectures can be found [here](https://ubcecon.github.io/ECON622/le
7777
- **SLIDES**: [Factorizations and Direct Methods](https://ubcecon.github.io/ECON622/lectures/lectures/factorizations_direct_methods.html)
7878
- Introduction to regularization and implicit bias of algorithms
7979
- [Numerical Linear Algebra](https://julia.quantecon.org/tools_and_techniques/numerical_linear_algebra.html) applying generic programming
80-
13. **October 23**: Iterative Methods, Geometry of Optimization, and Rethinking LLS
80+
13. **October 23**: Iterative Methods, Geometry of Optimization, Rethinking LLS, and Preconditioning
8181
- **SLIDES**: [Least Squares](https://ubcecon.github.io/ECON622/lectures/lectures/least_squares.html) and [Iterative Methods](https://ubcecon.github.io/ECON622/lectures/lectures/iterative_methods.html)
8282
- [Iterative Methods](https://julia.quantecon.org/tools_and_techniques/iterative_methods_sparsity.html)
83-
14. **October 28**: Preconditioning and Overview of Machine Learning
84-
- **SLIDES**: [Iterative Methods](https://ubcecon.github.io/ECON622/lectures/lectures/iterative_methods.html) and [Intro to ML](https://ubcecon.github.io/ECON622/lectures/lectures/intro_to_ml.html)
83+
14. **October 28**: Overview of Machine Learning
84+
- **SLIDES**: [Intro to ML](https://ubcecon.github.io/ECON622/lectures/lectures/intro_to_ml.html)
8585
- Finalize discussion of iterative methods and preconditioning
8686
- Introduce key concepts about supervised, unsupervised, reinforcement learning, semi-supervised, kernel-methods, deep-learning, etc.
87+
- Basic introduction to JAX and Python frameworks
8788
15. **October 30**: Differentiable everything! JAX and Auto-Differentiation/JVP/etc.
88-
- **SLIDES**: Finish [Intro to ML](https://ubcecon.github.io/ECON622/lectures/lectures/intro_to_ml.html) and start [Differentiation](https://ubcecon.github.io/ECON622/lectures/lectures/differentiation.html)
89-
- Core JAX transforms
89+
- **SLIDES**: [Differentiation](https://ubcecon.github.io/ECON622/lectures/lectures/differentiation.html)
9090
- Reverse-mode and forward-mode AD.
9191
- Jvps and vjps
92-
16. **November 4**: AD of Implicit Functions, Optimization Methods for High-Dimensional Problems
93-
- **SLIDES**: Finish [Differentiation](https://ubcecon.github.io/ECON622/lectures/lectures/differentiation.html) and start [Optimization](https://ubcecon.github.io/ECON622/lectures/lectures/optimization.html)
9492
- Implicit differentiation of systems of ODEs, linear systems, etc.
93+
16. **November 4**: High-dimensional optimization and Stochastic Optimization
94+
- **SLIDES**: [Optimization](https://ubcecon.github.io/ECON622/lectures/lectures/optimization.html)
9595
- Gradient descent variations
96-
17. **November 6**: Stochastic Optimization Methods
96+
- Using unbiased estimates instead of gradients
97+
17. **November 6**: Stochastic Optimization Methods and Machine Learning Pipelines
9798
- **SLIDES**: SGD variations in [Optimization](https://ubcecon.github.io/ECON622/lectures/lectures/optimization.html)
99+
- W&B sweeps, and code in `lectures/lectures/examples`-
98100
- SGD and methods for variance reduction in gradient estimates
99101
- Using SGD-variants in practice within ML pipelines in JAX and Pytorch
100-
18. **November 18**: Machine Learning Pipelines, HPO, and ERM
101-
- **SLIDES**: Finished example code of pipelines in [Optimization](https://ubcecon.github.io/ECON622/lectures/lectures/optimization.html), W&B sweeps, and code in `lectures/lectures/examples`
102102
- **Readings**: [Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/book1.html) Section 5.4 on ERM
103-
19. **November 20**: Neural Networks, Representation Learning, Double-Descent
103+
18. **November 18**: Neural Networks, Representation Learning, Double-Descent
104104
- **SLIDES**: [Deep Learning and Representation Learning](https://ubcecon.github.io/ECON622/lectures/lectures/deep_learning.html) and started [Double-Descent and Regularization](https://ubcecon.github.io/ECON622/lectures/lectures/overparameterization.html)
105105
- **Readings**
106106
- [Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/book1.html) Section 13.2.1 to 13.2.6 on MLPs and the importance of depth
@@ -109,7 +109,7 @@ Slides for the lectures can be found [here](https://ubcecon.github.io/ECON622/le
109109
- [Mark Schmidt's CPSC440 Notes on Double-Descent Curves](https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L7.pdf) (see [CPSC340](https://www.cs.ubc.ca/~schmidtm/Courses/340-F22/L32.pdf) lectures for a more basic treatment of these topics)
110110
- **Optional Extra Material**
111111
- [Probabilistic Machine Learning: Advanced Topics](https://probml.github.io/pml-book/book2.html) Section 32 on representation learning
112-
20. **November 25** Finish Double-Descent and Intro to Kernel Methods and Gaussian Processes
112+
19. **November 20** Finish Double-Descent and Intro to Kernel Methods and Gaussian Processes
113113
- **SLIDES**: [Kernel Methods and Gaussian Processes](https://ubcecon.github.io/ECON622/lectures/lectures/kernel_methods.html) and finish [Double-Descent and Regularization](https://ubcecon.github.io/ECON622/lectures/lectures/overparameterization.html)
114114
- **Readings**
115115
- If you didn't do it already, read [Mark Schmidt's CPSC440 Notes on Double-Descent Curves and Overparameterization](https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L7.pdf) (see [CPSC340](https://www.cs.ubc.ca/~schmidtm/Courses/340-F22/L32.pdf) lectures for a more basic treatment of these topics)
@@ -119,13 +119,12 @@ Slides for the lectures can be found [here](https://ubcecon.github.io/ECON622/le
119119
- [Probabilistic Machine Learning: Advanced Topics](https://probml.github.io/pml-book/book2.html) Section 18.1 to 18.3 on GPs and kernels
120120
- Researchers working in GPs love the online textbook [Gaussian Processes for Machine Learning](https://gaussianprocess.org/gpml/chapters/), so you may want to read the intro section on [GP Regression](https://gaussianprocess.org/gpml/chapters/RW2.pdf)
121121

122+
20. **November 25** Bayesian Methods and HMC
122123
21. **November 27** Applications
123124
22. **December 2** Applications
124-
125-
126125
23. **December 4** Applications
127126

128-
28. **December 18**
127+
24. **December 18**
129128
- Final Project due
130129

131130

docs/lectures/lectures/deep_learning.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -628,7 +628,7 @@
628628
" - Good representations are much more robust\n",
629629
" - With transfer learning you may be able to adapt very easily"
630630
],
631-
"id": "7cd249fa-049d-40b3-b144-041bc5b140a8"
631+
"id": "1559a0b9-88e7-455d-bfab-f67992541006"
632632
}
633633
],
634634
"nbformat": 4,

0 commit comments

Comments
 (0)