-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcifar.py
executable file
·254 lines (223 loc) · 9.63 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
import tensorflow as tf
from tensorflow.contrib.layers import flatten, linear, fully_connected, conv2d, batch_norm
from tensorflow.contrib.layers.python.layers import utils
from sacred import Experiment, Ingredient
from task import task_ingredient, Task
import numpy as np
from utils import *
ex = Experiment('cifar', ingredients=[task_ingredient])
img_h, img_w = 32, 32
@task_ingredient.config
def task_config():
batch_size = 100
learning_rate = 0.05
drop1 = 80
drop2 = 120
drop3 = 160
end_epoch = 200
keep_prob = 0.5
initial_keep_prob = 0.8
optimizer = 'momentum'
name = 'cifar'
@ex.config
def cfg():
dropout = 'information'
activations = 'relu'
beta = 3.0
max_alpha = 0.7
lognorm_prior = False
weight_decay = 0.001
filter_percentage = 1.0
alpha_mode = 'information'
@ex.named_config
def softplus():
activations = 'softplus'
lognorm_prior = True
class MyTask(Task):
def __init__(self):
train = np.load('datasets/cifar10-train.npz')
test = np.load('datasets/cifar10-test.npz')
self.dataset = {'train': (train['data'], train['labels']),
'test': (test['data'], test['labels'])}
self.dataset['valid'] = self.dataset['test']
@task_ingredient.capture
def build_placeholders(self, batch_size):
'''Creates the placeholders for this model'''
self.keep_prob = tf.placeholder(tf.float32, shape=[])
self.initial_keep_prob = tf.placeholder(tf.float32, shape=[])
self.sigma0 = tf.placeholder(tf.float32, shape=[])
self.x = tf.placeholder(tf.float32, shape=[batch_size,img_h,img_w,3]) # input (batch_size * x_size)
self.y = tf.placeholder(tf.float32, shape=[batch_size,10])
self.is_training = tf.placeholder(tf.bool, shape=[])
@ex.capture
def conv(self, inputs, num_outputs, activations, normalizer_fn = batch_norm, kernel_size=3, stride=1, scope=None):
'''Creates a convolutional layer with default arguments'''
if activations == 'relu':
activation_fn = tf.nn.relu
elif activations == 'softplus':
activation_fn = tf.nn.softplus
else:
raise ValueError("Invalid activation function.")
return conv2d( inputs = inputs,
num_outputs = num_outputs,
kernel_size = kernel_size,
stride = stride,
padding = 'SAME',
activation_fn = activation_fn,
normalizer_fn = normalizer_fn,
normalizer_params = {'is_training' : self.is_training, 'updates_collections': None, 'decay': 0.9},
scope=scope )
@ex.capture
def information_pool(self, inputs, max_alpha, alpha_mode, lognorm_prior, num_outputs=None, stride=2, scope=None):
if num_outputs is None:
num_ouputs = inputs.get_shape()[-1]
# Creates the output convolutional layer
network = self.conv(inputs, num_outputs=int(num_outputs), stride=stride)
with tf.variable_scope(scope,'information_dropout'):
# Computes the noise parameter alpha for the output
alpha = conv2d(inputs, num_outputs=int(num_outputs), kernel_size=3,
stride=stride, activation_fn=tf.sigmoid, scope='alpha')
# Rescale alpha in the allowed range and add a small value for numerical stability
alpha = 0.001 + max_alpha * alpha
# Computes the KL divergence using either log-uniform or log-normal prior
if not lognorm_prior:
kl = - tf.log(alpha/(max_alpha + 0.001))
else:
mu1 = tf.get_variable('mu1', [], initializer=tf.constant_initializer(0.))
sigma1 = tf.get_variable('sigma1', [], initializer=tf.constant_initializer(1.))
kl = KL_div2(tf.log(tf.maximum(network,1e-4)), alpha, mu1, sigma1)
tf.add_to_collection('kl_terms', kl)
# Samples the noise with the given parameter
e = sample_lognormal(mean=tf.zeros_like(network), sigma = alpha, sigma0 = self.sigma0)
# Saves the log-output of the network (useful to compute the total correlation)
tf.add_to_collection('log_network', tf.log(network * e))
# Returns the noisy output of the dropout
return network * e
@ex.capture
def conv_dropout(self, inputs, num_outputs, dropout):
if dropout == 'information':
network = self.information_pool(inputs, num_outputs=num_outputs)
elif dropout == 'binary':
network = self.conv(inputs, num_outputs, stride=2)
network = tf.nn.dropout(network, self.keep_prob)
elif dropout == 'none':
network = self.conv(inputs, num_outputs, stride=2)
else:
raise ValueError("Invalid dropout value")
return network
@ex.capture
def build_network(self, inputs, filter_percentage):
network = inputs
network = tf.nn.dropout(network, self.initial_keep_prob)
# 32x32x3
N = int(96*filter_percentage)
print "Filter 1: %d" % N
network = self.conv(network, N)
network = self.conv(network, N)
network = self.conv_dropout(network, N)
# 16x16x96
N = int(192*filter_percentage)
print "Filter 2: %d" % N
network = self.conv(network, N)
network = self.conv(network, N)
network = self.conv_dropout(network, N)
# 8x8x192
network = self.conv(network, N)
network = self.representation = self.conv(network, N, kernel_size=1)
network = self.conv(network, 10, kernel_size=1)
network = spatial_global_mean(network)
return network
@ex.capture
def build_loss(self, beta, task, weight_decay):
batch_size = task['batch_size']
with tf.variable_scope("network") as scope:
network = self.build_network(self.x)
logits = linear(network, num_outputs=10)
with tf.name_scope('loss'):
kl_terms = [ batch_average(kl) for kl in tf.get_collection('kl_terms') ]
if not kl_terms:
kl_terms = [ tf.constant(0.)]
N_train = self.dataset['train'][0].shape[0]
Lz = tf.add_n(kl_terms)/N_train
Lx = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=self.y))
beta = tf.constant(beta)
L2 = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() ])
loss = Lx + beta * Lz + weight_decay * L2
correct_prediction = tf.equal(tf.argmax(logits,1), tf.argmax(self.y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
self.loss = loss
self.error = (1. - accuracy) * 100.
self.Lx = Lx
self.Lz = Lz
self.beta = beta
@task_ingredient.capture
def train_batch(self, batch, stats, batch_size, keep_prob, initial_keep_prob):
xtrain, ytrain = batch
ytrain = np.eye(10)[ytrain]
feed_dict = {self.x: xtrain, self.y: ytrain, self.sigma0: 1., self.keep_prob: keep_prob, self.initial_keep_prob: initial_keep_prob, self.learning_rate: self.current_learning_rate, self.is_training: True}
batch_cost, batch_error, batch_Lx, batch_Lz, batch_beta, _ = self.sess.run( [ self.loss, self.error, self.Lx, self.Lz, self.beta, self.train_op], feed_dict)
stats.push(Lx = batch_Lx)
stats.push(Lz = batch_Lz)
stats.push(train = batch_cost)
stats.push(error = batch_error)
#
@ex.capture
def valid_batch(self, batch, stats):
xtrain, ytrain = batch
ytrain = np.eye(10)[ytrain]
feed_dict = {self.x: xtrain, self.y: ytrain, self.sigma0: 0., self.keep_prob: 1., self.initial_keep_prob: 1.0, self.is_training: False}
batch_cost, batch_error = self.sess.run( [ self.loss, self.error], feed_dict)
stats.push(train = batch_cost)
stats.push(error = batch_error)
@ex.capture
def dry_run(self):
'''
Since the statistics learned by batch normalization with dropout are
incorrect when dropout is disabled,
we do a dry run without dropout in order to relearn them before testing.
'''
for batch in self.iterate_minibatches('train'):
xtrain, ytrain = batch
ytrain = np.eye(10)[ytrain]
feed_dict = {self.x: xtrain, self.y: ytrain, self.sigma0: 0., self.keep_prob: 1., self.initial_keep_prob: 1.0, self.is_training: True}
batch_cost = self.sess.run( [ self.loss], feed_dict)
mytask = task = MyTask()
@ex.command
def train():
task.initialize()
task.train()
@ex.command
def test(load=True):
if load:
task.initialize(_load=True, _log_dir='valid/')
print "Dry run..."
task.dry_run()
print "Validating..."
task.valid()
@ex.command
def correlation(task,load=True):
self = mytask
if load:
self.initialize(_load=True, _logging=False, _log_dir='other/')
data = []
for batch in self.iterate_minibatches('valid'):
xtrain, ytrain = batch
ytrain = np.eye(10)[ytrain]
feed_dict = {self.x: xtrain, self.y: ytrain, self.sigma0: 1., self.initial_keep_prob: task['initial_keep_prob'], self.is_training: False}
z = tf.get_collection('log_network')[-1]
batch_z = self.sess.run( z, feed_dict)
data.append(batch_z)
data = np.vstack(data)
data = data.reshape(data.shape[0],-1)
def normal_tc(c0):
c1i = np.diag(1./np.diag(c0))
p = np.matmul(c1i,c0)
return - .5 * np.linalg.slogdet(p)[1] / c0.shape[0]
c0 = np.cov( data, rowvar=False )
tc = normal_tc(c0)
print "Total correlation: %f" % tc
@ex.automain
def run():
train()
valid(load=False)