-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_reward_dataset.py
182 lines (165 loc) · 8.64 KB
/
analyze_reward_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import pandas as pd
import numpy as np
from scipy.stats import pearsonr
from sklearn.metrics import cohen_kappa_score, precision_recall_fscore_support
import evaluate
from reward_model_dataset import LABELS, USE_LIKERT
methods = ["gold", "random", "knn", "zs"]
def get_stats(dfs, labels, rouge_all, bertscore_all):
is_h2h = "feedback_1" in dfs[0].columns
if is_h2h:
print("Win averages:")
else:
print("Mean values:")
df_to_label_to_method_to_mean = [{label: {} for label in labels + ["score", "rouge", "bertscore"]} for _ in range(2)]
for df_idx, df in enumerate(dfs):
for label in labels:
means = []
for method in methods:
if is_h2h:
wins = (df["method_1"] == method & df[label] == 0) | (df["method_2"] == method & df[label] == 1)
means.append(f"{method}: {wins.mean():.2f}")
else:
score = df[df["method"] == method][label].mean()
df_to_label_to_method_to_mean[df_idx][label][method] = score
means.append(f"{method}: {score:.2f}")
if not is_h2h:
scores = df[~df[label].isna()][label]
means.append(f"all: {scores.mean():.2f}")
print(f"{label}: {', '.join(means)}")
means = []
rouges = []
bertscores = []
for method in methods:
df_method = df[df["method"] == method]
score = (df_method[labels[0]] * sum([df_method[label] for label in labels]) / len(labels)).mean()
df_to_label_to_method_to_mean[df_idx]["score"][method] = score
means.append(f"{method}: {score:.2f}")
rouge = rouge_all[df["method"] == method].mean()
df_to_label_to_method_to_mean[df_idx]["rouge"][method] = rouge
rouges.append(f"{method}: {rouge:.2f}")
if bertscore_all is not None:
bertscore = bertscore_all[df["method"] == method].mean()
df_to_label_to_method_to_mean[df_idx]["bertscore"][method] = bertscore
bertscores.append(f"{method}: {bertscore:.2f}")
scores = df[labels[0]] * sum([df[label] for label in labels]) / len(labels)
means.append(f"all: {scores.mean():.2f}")
print(f"Score: {', '.join(means)}")
rouges.append(f"all: {rouge_all.mean():.2f}")
print(f"ROUGE-L: {', '.join(rouges)}")
if bertscore_all is not None:
bertscores.append(f"all: {bertscore_all.mean():.2f}")
print(f"BERTScore: {', '.join(bertscores)}")
print("\n")
return df_to_label_to_method_to_mean
def get_agreement(dfs, labels, rouge_all, bertscore_all, df_to_label_to_method_to_mean):
print("Agreement:")
method_masks = [dfs[0]["method"] == method for method in methods] + [np.ones(len(dfs[0])).astype(bool)]
for method, mask in zip(methods + ["All"], method_masks):
print("\nMethod:", method)
annos = [df.loc[mask] for df in dfs]
metrics_over_labels = []
for label in labels:
kappa = cohen_kappa_score(annos[0][label], annos[1][label])
pearson = pearsonr(annos[0][label], annos[1][label])[0]
acc = (annos[0][label] == annos[1][label]).mean()
prec, rec, f1, _ = precision_recall_fscore_support(annos[1][label], annos[0][label], average="binary")
metrics_over_labels.append([kappa, pearson, acc, prec, rec, f1])
print(f"{label}: Kappa: {kappa:.2f}, Pearson: {pearson:.2f}, Acc: {acc:.2f}, Prec: {prec:.2f}, Rec: {rec:.2f}, F1: {f1:.2f}")
avg_mol = np.array(metrics_over_labels).mean(axis=0)
print(f"Mean: Kappa {avg_mol[0]:.2f}:, Pearson {avg_mol[1]:.2f}:, Acc: {avg_mol[2]:.2f}, Prec: {avg_mol[3]:.2f}, Rec: {avg_mol[4]:.2f}, F1: {avg_mol[5]:.2f}")
anno_scores = [df[labels[0]] * sum([df[label] for label in labels]) / len(labels) for df in annos]
print(f"Score Correlation: {pearsonr(anno_scores[0], anno_scores[1])[0]:.2f}")
rouge = rouge_all[mask]
print(f"ROUGE-L Correlation: {pearsonr(anno_scores[1], rouge)[0]:.2f}")
if bertscore_all is not None:
bertscore = bertscore_all[mask]
print(f"BERTScore Correlation: {pearsonr(anno_scores[1], bertscore)[0]:.2f}")
do_system = False
if do_system:
print("\nSystem:")
for label in labels + ["score"]:
corr = pearsonr(
list(df_to_label_to_method_to_mean[0][label].values()),
list(df_to_label_to_method_to_mean[1][label].values()))[0]
print(f"{label}: {corr:.2f}")
corr = pearsonr(
list(df_to_label_to_method_to_mean[1]['score'].values()),
list(df_to_label_to_method_to_mean[1]['rouge'].values()))[0]
print(f"rouge-l: {corr:.2f}")
if bertscore_all is not None:
corr = pearsonr(
list(df_to_label_to_method_to_mean[1]['score'].values()),
list(df_to_label_to_method_to_mean[1]['bertscore'].values()))[0]
print(f"bertscore: {corr:.2f}")
perfect = np.array([True] * len(dfs[0]))
for label in labels:
perfect &= dfs[0][label] == dfs[1][label]
print(f"Perfect: {perfect.sum()} / {len(dfs[0])}")
print_imperfect = False
if print_imperfect:
for (_, a1_row), (_, a2_row) in zip(dfs[0][~perfect].iterrows(), dfs[1][~perfect].iterrows()):
print()
print(a1_row["question"])
print(a1_row["distractor"])
print(a1_row["feedback"])
print([a1_row[label] for label in labels])
print([a2_row[label] for label in labels])
def analyze_datasets(pred_anno: str, gold_anno: str, do_bertscore: bool):
rouge_metric = evaluate.load("rouge")
if do_bertscore:
bertscore_metric = evaluate.load("bertscore")
# Load data
postfix = "lik" if USE_LIKERT else "bin"
name_to_file_map = {
"ours": f"data/annotated/feedback_test_single_subset_annotated_{postfix}_manual.csv",
"gpt4": f"data/annotated/feedback_test_single_subset_annotated_{postfix}_gpt-4.csv",
"external": f"data/annotated/feedback_test_single_subset_annotated_{postfix}_external.csv"
}
dfs = [pd.read_csv(name_to_file_map[pred_anno]), pd.read_csv(name_to_file_map[gold_anno])]
df_to_external = [pred_anno == "external", gold_anno == "external"]
# Only consider rows where both dfs are labeled
dfs = [df[df[LABELS[1]].notna()] for df in dfs]
if len(dfs) == 2:
merge_keys = ["qid", "distractor", "feedback"]
dfs[0] = dfs[0].merge(dfs[1][merge_keys], on=merge_keys, how="inner")
dfs[1] = dfs[1].merge(dfs[0][merge_keys], on=merge_keys, how="inner")
# Sorting is necessary to line up with original dataset after merging
dfs = [df.sort_values(["qid", "distractor"], ignore_index=True) for df in dfs]
# Flip labels
labels = LABELS
if not USE_LIKERT:
labels[0] = "correct"
for df, external in zip(dfs, df_to_external):
if external:
for label in labels:
df[label] = df[label].astype(int)
else:
df["correct"] = 1 - df["incorrect"]
df["reveal"] = 1 - df["reveal"]
# Compute ROUGE-L and BERTScore
og_df = pd.read_csv("data/raw/eedi_expanded_test.csv")
og_df_dedup = og_df[~og_df[["qid", "distractor"]].duplicated()]
og_joined = dfs[0].merge(og_df_dedup, on=["qid", "distractor"])
pred_feedbacks = og_joined["feedback_x"].to_numpy()
og_feedbacks = og_joined["feedback_y"].to_numpy()
rouge_all = np.array(rouge_metric.compute(
predictions=pred_feedbacks, references=og_feedbacks, use_aggregator=False)["rougeL"])
if do_bertscore:
bertscore_all = np.array(bertscore_metric.compute(
predictions=pred_feedbacks, references=og_feedbacks, model_type="microsoft/deberta-xlarge-mnli")["f1"])
else:
bertscore_all = None
# Get means across datasets/labels/methods
df_to_label_to_method_to_mean = get_stats(dfs, labels, rouge_all, bertscore_all)
# Get agreement across datasets per label
if len(dfs) == 2:
get_agreement(dfs, labels, rouge_all, bertscore_all, df_to_label_to_method_to_mean)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("pred_anno", type=str, choices=["ours", "external", "gpt4"], help="Set for predicted annotations")
parser.add_argument("gold_anno", type=str, choices=["ours", "external", "gpt4"], help="Set for ground-truch annotations")
parser.add_argument("--do_bertscore", action="store_true", help="Compute BERTScore")
args = parser.parse_args()
analyze_datasets(args.pred_anno, args.gold_anno, args.do_bertscore)