-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanalyze_data.py
291 lines (260 loc) · 12.8 KB
/
analyze_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from collections import Counter
import os
import json
from typing import Iterable, Tuple, List, Dict
from collections import Counter
from tqdm import tqdm
# from matplotlib import pyplot as plt
import numpy as np
from transformers import GPT2TokenizerFast
from vocabulary import Vocabulary, UNK_MAP
from data_types import Article, GenTaskSample, AnswerScoringSample, FeedbackTaskSample, ProblemSolvingTaskSample, CTTaskSample, Formula, OPT
from constants import(
TYPE_STR_TO_INT, WIKI_DATA, OFEQ_DATA, EXEQ_DATA, AS_ANSWERS, AS_PROBLEMS, FEEDBACK_PROBLEMS, FEEDBACK_SAMPLES, GSM8K_DATA, CT_DATA,
SpecialNumToken, SpecialOpToken, SpecialVarToken
)
START_PARENS = ("normal-(", "normal-[", "normal-{")
END_PARENS = ("normal-)", "normal-]", "normal-}")
def process_tree(article_name: str, tree_node: OPT, depth: int, err_found: bool, cat_err_found: bool, stats: dict):
"""
Update the child range for the given sub-tree, and max depth/width
"""
num_children = len(tree_node[2]) if tree_node[2] else 0
stats["max_depth"] = max(stats["max_depth"], depth)
stats["max_width"] = max(stats["max_width"], num_children)
token_to_child_range = stats["type_to_token_to_child_range"].setdefault(tree_node[0], {})
token_to_freq = stats["type_to_token_to_freq"].setdefault(tree_node[0], {})
token_to_freq.setdefault(tree_node[1], 0)
token_to_freq[tree_node[1]] += 1
if num_children:
stats["num_ops"] += 1
if tree_node[0] == "T":
stats["num_text"] += 1
if num_children:
stats["num_text_ops"] += 1
if tree_node[0] == "+":
stats["num_anon_ops"] += 1
if tree_node[2][0][1] in ("SUB", "SUP"):
stats["num_anon_ops_with_type"] += 1
err_matched = False
# Check for err case 1
if num_children > 1:
for child_idx in range(len(tree_node[2]) - 1):
e_node = tree_node[2][child_idx + 1]
if e_node[0] == "E" and e_node[2] and len(e_node[2]) > 3 and e_node[2][0][1] == "fragments" and e_node[2][1][1] in START_PARENS and e_node[2][-1][1] in END_PARENS:
# Unset E type of child to avoid double counting
e_node[0] = "E_no_more"
err_found = True
stats["num_err_ops"] += 1
stats["num_err_case_1"] += 1
err_matched = True
if tree_node[0] == "E" and num_children:
err_found = True
stats["num_err_ops"] += 1
stats["all_error_types"].add(tuple(tree_node[2][0][:2]))
# Check for err case 2
if num_children > 3 and tree_node[2][0][1] == "fragments":
num_ops = 0
for child in tree_node[2][2:-1]:
if child[0] in ("U", "O") and not child[2]:
num_ops += 1
if num_ops > 0:
stats["num_err_case_2"] += 1
err_matched = True
# Check for err case 3
if not err_matched and num_children > 3 and tree_node[2][0][1] == "fragments":
if tree_node[2][1][1] in START_PARENS and tree_node[2][-1][1] in END_PARENS:
stats["num_err_case_3"] += 1
err_matched = True
if err_matched:
cat_err_found = True
# Update child range for token, type str, and aggregate type
for key, range_dict in [
(tree_node[1], token_to_child_range),
(tree_node[0], stats["type_str_to_child_range"]),
(TYPE_STR_TO_INT.get(tree_node[0]), stats["type_to_child_range"])
]:
child_range = range_dict.setdefault(key, [num_children, num_children])
child_range[0] = min(num_children, child_range[0])
child_range[1] = max(num_children, child_range[1])
# Process children
if tree_node[2]:
for child in tree_node[2]:
if child[0] == "E" and tree_node[0] != "M" and not child[2]:
print("Non-mat err w/o children - ", article_name)
child_err_found, child_cat_err_found = process_tree(article_name, child, depth + 1, err_found, cat_err_found, stats)
err_found = err_found or child_err_found
cat_err_found = cat_err_found or child_cat_err_found
return err_found, cat_err_found
def analyze_data(formulas: Iterable[Tuple[str, Formula]]):
"""
Gather high-level info on pre-processed data
"""
stats = {
"type_to_token_to_child_range": {},
"type_str_to_child_range": {},
"type_to_child_range": {},
"all_error_types": set(),
"type_to_token_to_freq": {},
"max_depth": 0,
"max_width": 0,
"num_formulas": 0,
"num_formulas_with_err": 0,
"num_formulas_with_cat_err": 0,
"num_ops": 0,
"num_anon_ops": 0,
"num_anon_ops_with_type": 0,
"num_err_ops": 0,
"num_err_case_1": 0,
"num_err_case_2": 0,
"num_err_case_3": 0,
"num_text": 0,
"num_text_ops": 0,
}
for article_name, formula in formulas:
stats["num_formulas"] += 1
has_err, has_cat_err = process_tree(article_name, formula["opt"], 1, False, False, stats)
if has_err:
stats["num_formulas_with_err"] += 1
if has_cat_err:
stats["num_formulas_with_cat_err"] += 1
# Print results
# for type_str, token_to_child_range in type_to_token_to_child_range.items():
# for token, child_range in token_to_child_range.items():
# if child_range[0] != child_range[1]:
# print(type_str, token, child_range)
for type_str, child_range in stats["type_str_to_child_range"].items():
print(type_str, child_range, sum(stats["type_to_token_to_freq"][type_str].values()))
for token_type, child_range in stats["type_to_child_range"].items():
print(token_type, child_range)
print("Error types:")
print(stats["all_error_types"])
print("Num formulas:", stats["num_formulas"], "with err:", stats["num_formulas_with_err"], "with cat err:", stats["num_formulas_with_cat_err"])
print("Num ops:", stats["num_ops"])
print("Num anon ops:", stats['num_anon_ops'], "with type:", stats['num_anon_ops_with_type'])
print("Num err ops:", stats['num_err_ops'], "case 1:", stats['num_err_case_1'], "case 2:", stats['num_err_case_2'], "case 3:", stats['num_err_case_3'])
print("Num text tokens:", stats["num_text"], "with children:", stats["num_text_ops"])
print("Max depth:", stats["max_depth"], "Max width:", stats["max_width"])
# print("Frequencies of math symbols by number of GPT tokens...")
# text_tokenizer: GPT2TokenizerFast = GPT2TokenizerFast.from_pretrained("gpt2")
# for type_str, token_to_freq in stats["type_to_token_to_freq"].items():
# token_len_to_freq = {}
# for token, freq in token_to_freq.items():
# token_len = len(text_tokenizer(token)["input_ids"])
# token_len_to_freq.setdefault(token_len, 0)
# token_len_to_freq[token_len] += freq
# print(type_str, sorted(token_len_to_freq.items()))
print("Tokens converted to UNK by type...")
ovarall_tokens = set()
overall_total = 0
for type_str, token_to_freq in stats["type_to_token_to_freq"].items():
if type_str in ("E", "E_no_more", "+"):
continue
unks = set()
total = 0
for token, freq in token_to_freq.items():
ovarall_tokens.add(token)
overall_total += freq
token_type, token_id = Vocabulary.get_token(type_str, token)
if token_id == UNK_MAP[token_type]:
unks.add(token)
total += freq
print("Type:", type_str, "Unique:", len(unks), "Occurrences:", total)
print("All tokens (UNK and non-UNK) - Unique:", len(ovarall_tokens), "Occurrences:", overall_total)
# For relevant types, plot n most frequent types against portion of nodes covered by those types
# for type_str in ["N", "T", "V", "-", "O", "F"]:
# frequencies = sorted(stats["type_to_token_to_freq"][type_str].values(), reverse=True)
# plt.plot(list(range(len(frequencies))), np.cumsum(frequencies) / sum(frequencies))
# plt.title(f"Frequency CDF for {type_str} type")
# plt.show()
def analyze_wiki():
def get_wiki_formulas():
for article_name in tqdm(os.listdir(WIKI_DATA)):
article_filepath = os.path.join(WIKI_DATA, article_name)
with open(article_filepath, encoding="utf-8") as article_file:
article: Article = json.load(article_file)
for formula in article["formulas"].values():
yield article_name, formula
analyze_data(get_wiki_formulas())
def analyze_mathsum(dataset: str):
data_dir = OFEQ_DATA if dataset == "OFEQ-10k" else EXEQ_DATA
with open(os.path.join(data_dir, "train.json"), encoding="utf-8") as train_file:
train_data: List[GenTaskSample] = json.load(train_file)
with open(os.path.join(data_dir, "val.json"), encoding="utf-8") as val_file:
val_data: List[GenTaskSample] = json.load(val_file)
with open(os.path.join(data_dir, "test.json"), encoding="utf-8") as test_file:
test_data: List[GenTaskSample] = json.load(test_file)
all_formulas = []
for src in [train_data, val_data, test_data]:
for part in ["prompt", "label"]:
all_formulas += [("", formula) for sample in src for formula in sample[part]["formulas"].values()]
analyze_data(tqdm(all_formulas))
def analyze_answer_scoring():
with open(AS_PROBLEMS, encoding="utf-8") as problem_file:
problems: Dict[str, Article] = json.load(problem_file)
with open(AS_ANSWERS, encoding="utf-8") as answer_file:
answers: List[AnswerScoringSample] = json.load(answer_file)
all_formulas = [
("", formula) for problem in problems.values() for formula in problem["formulas"].values()
] + [
("", formula) for answer in answers for formula in answer["answer"]["formulas"].values()
]
analyze_data(tqdm(all_formulas))
def analyze_feedback():
with open(FEEDBACK_PROBLEMS, encoding="utf-8") as problem_file:
problems: Dict[str, Article] = json.load(problem_file)
with open(FEEDBACK_SAMPLES, encoding="utf-8") as sample_file:
samples: List[FeedbackTaskSample] = json.load(sample_file)
all_formulas = []
for problem in problems.values():
all_formulas += [("", formula) for formula in problem["formulas"].values()]
for field in ["answer", "feedback"]:
all_formulas += [("", formula) for sample in samples for formula in sample[field]["formulas"].values()]
analyze_data(tqdm(all_formulas))
print("Total num problems:", len(problems), "; responses:", len(samples))
feedback_counter = Counter(str(sample["feedback"]) for sample in samples)
repeated_feedback = [feedback for feedback in feedback_counter.items() if feedback[1] > 1]
print("Repeated feedback messages:", len(repeated_feedback), "; instances:", sum(feedback[1] for feedback in repeated_feedback))
def analyze_gsm8k():
all_formulas = []
for split in ("train", "test"):
with open(os.path.join(GSM8K_DATA, f"{split}.json"), encoding="utf-8") as src_file:
samples: List[ProblemSolvingTaskSample] = json.load(src_file)
for field in ["problem", "steps", "answer"]:
all_formulas += [("", formula) for sample in samples for formula in sample[field]["formulas"].values()]
analyze_data(tqdm(all_formulas))
def analyze_math():
# TODO
pass
def analyze_mwp():
# TODO
pass
def analyze_ct():
with open(CT_DATA, encoding="utf-8") as data_file:
samples: List[CTTaskSample] = json.load(data_file)
key_to_samples = {}
for sample in samples:
key_to_samples.setdefault((sample["student_id"], sample["problem_id"]), []).append(sample)
print(len(key_to_samples), len(samples))
def analyze_vocab():
print("Number of GPT tokens in each vocab symbol...")
text_tokenizer: GPT2TokenizerFast = GPT2TokenizerFast.from_pretrained("gpt2")
for infreq_to_unk in [True, False]:
print("Converting infrequent tokens to UNK:", infreq_to_unk)
Vocabulary.load(infreq_to_unk=infreq_to_unk)
for token_type, symbol_to_token_id in Vocabulary._vocab.items():
tokens_to_symbols: Dict[tuple, List[str]] = {}
for symbol in symbol_to_token_id:
tokens_to_symbols.setdefault(
tuple(sorted(text_tokenizer(symbol)["input_ids"])), []
).append(symbol)
freq_counter = Counter(len(text_tokenizer(symbol)["input_ids"]) for symbol in symbol_to_token_id)
print(token_type, freq_counter.most_common())
print("Symbols with overlapping token sets..")
total_overlaps = 0
for token_list, symbols in tokens_to_symbols.items():
if len(symbols) > 1:
total_overlaps += 1
if total_overlaps <= 5:
print(token_list, symbols)
print("Total:", total_overlaps)