-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
504 lines (474 loc) · 25.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from typing import List, Callable, Tuple, Optional, Dict
import os
import math
from itertools import chain
from functools import reduce
import numpy as np
import torch
import torch.distributed as dist
from tqdm import tqdm
from sklearn import metrics
from nlgeval import compute_metrics
import zss
from loading import Dataset, GenTaskDataset, FeedbackDataset, trim_batch, get_data_loader, get_headline_data, get_mwp_data, get_feedback_data
from mathGPT.utils import text_tokenizer
from vocabulary import Vocabulary, get_matrix_symbol
from model_math_gpt import MathGPTBase, MathGPTLM, MathGPTClassifier
from generate import get_most_likely_predictions, generate
from decode import decode_batch, get_tree, DecodeTreeNode
from pre_process_utils import process_raw_text
from math_tokenize import tokenize_formula, ExceedMaxDepth
from utils import TrainOptions
from data_types import CollatedBatch, Article
from constants import PADDING_TOKEN_ID, DownstreamTask, TokenType, SpecialOpToken
def calculate_ted(labels: List[DecodeTreeNode], preds: List[DecodeTreeNode]):
"""
Get average tree edit distance across label/pred pairs
"""
def get_children(tree_node: DecodeTreeNode):
return tree_node.children
def get_label(tree_node: DecodeTreeNode):
return str(tree_node.token_type) + "!" + str(tree_node.token_id)
def label_dist(label_1: str, label_2: str):
return 0 if label_1 == label_2 else 1
return np.mean([
zss.simple_distance(label, pred, get_children, get_label, label_dist)
for label, pred in zip(labels, preds)
])
def trees_equal(tree_1: DecodeTreeNode, tree_2: DecodeTreeNode):
"""
Test if two decoded trees are equal
"""
if tree_1.token_id != tree_2.token_id or tree_1.token_type != tree_2.token_type:
return False
if len(tree_1.children) != len(tree_2.children):
return False
for child_1, child_2 in zip(tree_1.children, tree_2.children):
if not trees_equal(child_1, child_2):
return False
return True
def eval_tree_value(tree_node: DecodeTreeNode, options: TrainOptions) -> float:
"""
Get numeric value that tree evaluates to
Just for trees structured like MWP to eq task labels
i.e. x = <numbers and algebraic ops>
"""
if options.num_to_tree and tree_node.token_type == TokenType.OP and tree_node.token_id == SpecialOpToken.NUM_SUB_TREE_HEAD:
symbol = "".join([Vocabulary.get_symbol(child.token_type, child.token_id) for child in tree_node.children])
return float(symbol)
if options.math_text and tree_node.token_type == TokenType.OP and tree_node.token_id == SpecialOpToken.MATH_TEXT_HEAD:
symbol = text_tokenizer().decode([child.token_id for child in tree_node.children])
return float(symbol)
symbol = Vocabulary.get_symbol(tree_node.token_type, tree_node.token_id)
if tree_node.token_type == TokenType.NUM:
return float(symbol)
if symbol == "eq":
assert len(tree_node.children) == 2
return eval_tree_value(tree_node.children[1], options)
if symbol == "plus":
return sum([eval_tree_value(child, options) for child in tree_node.children])
if symbol == "minus":
return eval_tree_value(tree_node.children[0], options) - sum([eval_tree_value(child, options) for child in tree_node.children[1:]])
if symbol == "times":
return math.prod([eval_tree_value(child, options) for child in tree_node.children])
if symbol == "divide":
if len(tree_node.children) == 0:
return 1
return reduce(
lambda prev, cur: prev / cur,
[eval_tree_value(child, options) for child in tree_node.children[1:]],
eval_tree_value(tree_node.children[0], options)
)
if symbol == "SUP":
assert len(tree_node.children) == 2
return eval_tree_value(tree_node.children[0], options) ** eval_tree_value(tree_node.children[1], options)
if symbol == "percent":
assert len(tree_node.children) == 1
return eval_tree_value(tree_node.children[0], options) / 100
if symbol == get_matrix_symbol("D"):
assert len(tree_node.children) == 1
return eval_tree_value(tree_node.children[0], options)
if symbol == "limit-from": # Won't occur in gold labels but could occur in preds from copying parsing errors
return eval_tree_value(tree_node.children[0], options)
raise Exception(f"Unsupported token: type={tree_node.token_type}, id={tree_node.token_id}, symbol={symbol}")
def evaluate_lm(model: MathGPTLM, dataset: Dataset, options: TrainOptions):
"""
Calculate perplexity: e ^ ((1/n) * nll)
Algorithm from https://huggingface.co/docs/transformers/perplexity
"""
model.eval()
# Only 1 sequence can be processed at a time to recover NLL from the cross-entropy loss (because of padding complications)
data_loader = get_data_loader(dataset, None, 1, False, False, options)
total_loss = 0.0
num_batches = 0
stride = options.stride or options.max_seq_len
with torch.no_grad():
nlls: List[torch.Tensor] = []
total_sequence_length = 0
for batch in tqdm(data_loader):
sequence_length = batch["token_ids"].shape[1]
total_sequence_length += sequence_length
# Get the sum of the NLL for each token in the sequence, using the stride method
# Region to left of split point is just for context with no NLL computed, and region to the right contribues to running NLL
for split_point in range(0, sequence_length, stride):
start_idx = max(split_point + stride - options.max_seq_len, 0)
end_idx = min(split_point + stride, sequence_length)
target_len = end_idx - split_point # This is equal to stride length except maybe shorter for the last iteration
sub_seq_batch = trim_batch(batch, start_idx, end_idx)
# Set targets to left of split point to padding so their NLL is not computed
labels = torch.clone(sub_seq_batch["token_ids"])
labels[:, :-target_len] = PADDING_TOKEN_ID
# Run model on batch sub-sequence with altered targets
loss = model(sub_seq_batch, labels=labels)[0].detach().cpu().numpy()
total_loss += loss
num_batches += 1
# Loss is average NLL over all tokens in the sequence, multiply by number of targets to undo average and retrieve sum
nlls.append(loss * target_len)
if options.ddp:
all_results = [None] * dist.get_world_size()
dist.all_gather_object(all_results, {
"total_loss": total_loss,
"num_batches": num_batches,
"total_sequence_length": total_sequence_length,
"nlls": nlls
})
total_loss = sum([result["total_loss"] for result in all_results])
num_batches = sum([result["num_batches"] for result in all_results])
total_sequence_length = sum([result["total_sequence_length"] for result in all_results])
nlls = list(chain(*[result["nlls"] for result in all_results]))
perplexity = np.exp(np.sum(nlls) / total_sequence_length)
# TODO: see why loss is different here vs. evaluate_lm_accuracy
return total_loss / num_batches, [perplexity], "Perplexity: {:.3f}"
def process_model_output(model: MathGPTBase, dataset: Dataset, task: Optional[DownstreamTask], options: TrainOptions,
output_accumulator: Callable[[Tuple, CollatedBatch], None]):
data_loader = get_data_loader(dataset, task, options.batch_size, False, False, options)
total_loss = 0.0
num_batches = 0
with torch.no_grad():
for batch in tqdm(data_loader):
model_output = model(batch)
total_loss += model_output[0].detach().cpu().numpy()
num_batches += 1
output_accumulator(model_output, batch)
return total_loss / num_batches
def evaluate_lm_accuracy(model: MathGPTLM, dataset: Dataset, task: Optional[DownstreamTask], options: TrainOptions):
"""
Calculate per-token prediction accuracy
"""
model.eval()
all_predictions = []
all_labels = []
def accumulate_predictions(model_output, batch: CollatedBatch):
type_preds, token_preds = get_most_likely_predictions(model_output[1])
# For predictions and targets, stack types and tokens in last dimension
type_preds = type_preds[:, :-1].contiguous().view(-1).detach().cpu().numpy()
token_preds = token_preds[:, :-1].contiguous().view(-1).detach().cpu().numpy()
predictions = np.stack([type_preds, token_preds], axis=-1)
type_targets = batch["token_types"][:, 1:].contiguous().view(-1).detach().cpu().numpy()
labels = batch["gen_labels"] if batch["gen_labels"] is not None else batch["token_ids"]
token_targets = labels[:, 1:].contiguous().view(-1).detach().cpu().numpy()
targets = np.stack([type_targets, token_targets], axis=-1)
mask = token_targets != PADDING_TOKEN_ID
all_predictions.append(predictions[mask])
all_labels.append(targets[mask])
loss = process_model_output(model, dataset, task, options, accumulate_predictions)
if options.ddp:
all_results = [None] * dist.get_world_size()
dist.all_gather_object(all_results, {
"loss": loss,
"all_predictions": all_predictions,
"all_labels": all_labels
})
loss = np.mean([result["loss"] for result in all_results])
all_predictions = list(chain(*[result["all_predictions"] for result in all_results]))
all_labels = list(chain(*[result["all_labels"] for result in all_results]))
all_preds_np = np.concatenate(all_predictions, axis=0)
all_labels_np = np.concatenate(all_labels, axis=0)
# Get indices where both type and token match
match = all_preds_np == all_labels_np
match = match[:, 0] & match[:, 1]
accuracy = sum(match) / len(match)
return loss, [accuracy], "Accuracy: {:.3f}"
def evaluate_gen_task(model_name: str, model: MathGPTLM, dataset: Dataset, task: DownstreamTask, fold: int, options: TrainOptions):
model.eval()
compute_ted = (options.eval_formulas or task == DownstreamTask.MWP) and not options.baseline
# Only process one sequence at a time since prompts may have different lengths
data_loader = get_data_loader(dataset, task, 1, False, False, options)
all_labels: List[str] = []
all_predictions: List[str] = []
all_label_trees: List[DecodeTreeNode] = []
all_pred_trees: List[DecodeTreeNode] = []
with torch.no_grad():
for batch in tqdm(data_loader):
split_point = batch["prompt_lengths"][0]
gen_batch = generate(model, trim_batch(batch, 0, split_point), options)
label = trim_batch(batch, split_point, options.max_seq_len)
pred = trim_batch(gen_batch, split_point, options.max_seq_len)
all_labels.append(decode_batch(label)[0].replace("\n", " "))
all_predictions.append(decode_batch(pred)[0].replace("\n", " "))
if compute_ted:
all_label_trees.append(get_tree(label["token_ids"][0], label["token_types"][0]))
all_pred_trees.append(get_tree(pred["token_ids"][0], pred["token_types"][0]))
if options.ddp:
all_results = [None] * dist.get_world_size()
dist.all_gather_object(all_results, {
"all_predictions": all_predictions,
"all_labels": all_labels
})
all_predictions = list(chain(*[result["all_predictions"] for result in all_results]))
all_labels = list(chain(*[result["all_labels"] for result in all_results]))
exact_match = [pred == label for pred, label in zip(all_predictions, all_labels)]
accuracy = sum(exact_match) / len(all_labels)
postfix = "_formulas" if options.eval_formulas else "_text" if options.eval_text else ""
pred_filename = f"preds_{model_name}{postfix}_{fold}.txt"
label_filename = f"labels_{model_name}{postfix}_{fold}.txt"
with open(pred_filename, "w", encoding="utf-8") as pred_file:
pred_file.write("\n".join(all_predictions))
with open(label_filename, "w", encoding="utf-8") as label_file:
label_file.write("\n".join(all_labels))
metrics = compute_metrics(hypothesis=pred_filename, references=[label_filename], no_skipthoughts=True, no_glove=True)
results = [accuracy, metrics['Bleu_4'], metrics['ROUGE_L'], metrics['METEOR']]
template = "Exact Match Accuracy: {:.3f}, BLEU-4: {:.3f}, ROUGE-L: {:.3f}, METEOR: {:.3f}"
if compute_ted:
results.append(calculate_ted(all_label_trees, all_pred_trees))
tree_exact_match = [trees_equal(label_tree, pred_tree) for label_tree, pred_tree in zip(all_label_trees, all_pred_trees)]
results.append(sum(tree_exact_match) / len(tree_exact_match))
template += ", TED: {:.3f}, Tree Match: {:.3f}"
if task == DownstreamTask.MWP:
pred_tree_vals = []
for pred_tree in all_pred_trees:
try:
pred_tree_vals.append(eval_tree_value(pred_tree, options))
except Exception:
pred_tree_vals.append(None)
tree_vals_eq = [
eval_tree_value(label_tree, options) == pred_tree_val
for label_tree, pred_tree_val in zip(all_label_trees, pred_tree_vals)
]
results.append(sum(tree_vals_eq) / len(tree_vals_eq))
text_and_val_match = [tree_val_match and text_match for tree_val_match, text_match in zip(tree_vals_eq, exact_match)]
results.append(sum(text_and_val_match) / len(text_and_val_match))
tree_and_val_match = [tree_val_match and tree_match for tree_val_match, tree_match in zip(tree_vals_eq, tree_exact_match)]
results.append(sum(tree_and_val_match) / len(tree_and_val_match))
template += ", Value Match: {:.3f}, Text + Value Match {:.3f}, Tree + Value Match {:.3f}"
return 0, results, template
def get_problem_solving_final_answer(full_solution: str):
processed_solution = ""
if "Final Answer:" in full_solution:
processed_solution = full_solution.split("Final Answer:")[1]
return processed_solution.strip().replace(" , ", "") # Remove commas from numbers and whitespace around answer
def evaluate_problem_solving_task(model_name: str, model: MathGPTLM, dataset: Dataset, task: DownstreamTask, overwrite_results: bool, options: TrainOptions):
model.eval()
postfix = "_final" if options.eval_final else ""
label_filename = f"labels_{model_name}{postfix}.txt"
pred_filename = f"preds_{model_name}{postfix}.txt"
if overwrite_results or not os.path.exists(pred_filename):
# Only process one sequence at a time since prompts may have different lengths
data_loader = get_data_loader(dataset, task, 1, False, False, options)
all_labels: List[str] = []
all_predictions: List[str] = []
with torch.no_grad():
for batch in tqdm(data_loader):
split_point = batch["prompt_lengths"][0]
gen_batch = generate(model, trim_batch(batch, 0, split_point), options)
label = trim_batch(batch, split_point, options.max_seq_len)
pred = trim_batch(gen_batch, split_point, options.max_seq_len)
label_str = decode_batch(label)[0].replace("\n", " ").strip()
pred_str = decode_batch(pred)[0].replace("\n", " ").strip()
if options.eval_final:
pred_str = pred_str.split("[SEP] Final Answer:")[0].strip() or " "
all_labels.append(label_str)
all_predictions.append(pred_str)
with open(label_filename, "w", encoding="utf-8") as label_file:
label_file.write("\n".join(all_labels))
with open(pred_filename, "w", encoding="utf-8") as pred_file:
pred_file.write("\n".join(all_predictions))
else:
with open(label_filename, encoding="utf-8") as label_file:
all_labels = label_file.readlines()
with open(pred_filename, encoding="utf-8") as pred_file:
all_predictions = pred_file.readlines()
# Group labels/preds by difficulty level
level_to_results: Dict[str, Dict[str, List]] = {}
if task == DownstreamTask.MATH:
for label, pred, sample in zip(all_labels, all_predictions, dataset):
cur_level = level_to_results.setdefault(sample.meta["level"], {"labels": [], "preds": []})
cur_level["labels"].append(label)
cur_level["preds"].append(pred)
level_to_results["Overall"] = {"labels": all_labels, "preds": all_predictions}
if options.eval_final:
level_to_metrics = {}
for level, res in sorted(level_to_results.items()):
label_level_filename = f"labels_{model_name}_{level}.txt"
pred_level_filename = f"preds_{model_name}_{level}.txt"
with open(label_level_filename, "w", encoding="utf-8") as label_file:
label_file.write("\n".join(res["labels"]))
with open(pred_level_filename, "w", encoding="utf-8") as pred_file:
pred_file.write("\n".join(res["preds"]))
level_to_metrics[level] = compute_metrics(hypothesis=pred_level_filename, references=[label_level_filename], no_skipthoughts=True, no_glove=True)
template = "\n".join([
level + " - BLEU-4: {:.3f}, ROUGE-L: {:.3f}, METEOR: {:.3f}" for level in sorted(level_to_metrics.keys())
])
results = [mets[stat] for _, mets in sorted(level_to_metrics.items()) for stat in ["Bleu_4", "ROUGE_L", "METEOR"]]
else:
template = ", ".join([level + ": {:.3f}" for level in sorted(level_to_results.keys())])
results = [
metrics.accuracy_score(
[get_problem_solving_final_answer(label) for label in res["labels"]],
[get_problem_solving_final_answer(pred) for pred in res["preds"]]
)
for _, res in sorted(level_to_results.items())
]
return 0, results, template
def evaluate_cls_task(model: MathGPTClassifier, dataset: Dataset, task: DownstreamTask, options: TrainOptions):
model.eval()
all_predictions = []
all_labels = []
def accumulate_predictions(model_output, batch: CollatedBatch):
predictions = torch.nn.Softmax(dim=-1)(model_output[1])
all_predictions.append(predictions.detach().cpu().numpy())
all_labels.append(batch["cls_labels"].detach().cpu().numpy())
loss = process_model_output(model, dataset, task, options, accumulate_predictions)
if options.ddp:
all_results = [None] * dist.get_world_size()
dist.all_gather_object(all_results, {
"loss": loss,
"all_predictions": all_predictions,
"all_labels": all_labels
})
loss = np.mean([result["loss"] for result in all_results])
all_predictions = list(chain(*[result["all_predictions"] for result in all_results]))
all_labels = list(chain(*[result["all_labels"] for result in all_results]))
possible_labels = list(range(options.num_classes))
all_preds_np = np.concatenate(all_predictions, axis=0)
all_labels_np = np.concatenate(all_labels, axis=0)
# This is the equivalent of averaging the AUC on each label individually
auc = metrics.roc_auc_score(all_labels_np, all_preds_np, labels=possible_labels, multi_class="ovr", average="macro")
all_preds_np = np.argmax(all_preds_np, axis=-1)
rmse = np.sqrt(metrics.mean_squared_error(all_labels_np, all_preds_np))
accuracy = metrics.accuracy_score(all_labels_np, all_preds_np)
kappa = metrics.cohen_kappa_score(all_labels_np, all_preds_np, labels=possible_labels)
_, _, f1, _ = metrics.precision_recall_fscore_support(all_labels_np, all_preds_np)
return loss, [accuracy, auc, kappa, rmse, f1.mean()], "Accuracy: {:.3f}, AUC: {:.3f}, Kappa: {:.3f}, RMSE: {:.3f}, F1: {:.3f}"
def evaluate_ct(model_name: str):
matches: List[Dict[str, int]] = []
sizes: List[Dict[str, int]] = []
for fold in range(5):
cur_matches = {
"_overall": 0,
"BUG/ERR": 0,
}
matches.append(cur_matches)
cur_sizes = {
"_overall": 0,
"BUG/ERR": 0,
}
sizes.append(cur_sizes)
with open(f"results/preds_{model_name}_{fold}.txt", encoding="utf-8") as pred_file:
with open(f"results/labels_{model_name}_{fold}.txt", encoding="utf-8") as label_file:
for pred, label in zip(pred_file, label_file):
pred_act_in = pred.split(":", 1)[1].strip()
outcome, label_act_in = label.split(":", 1)
outcome = outcome.strip()
label_act_in = label_act_in.strip()
action = label_act_in.split(" ", 1)[0]
cur_sizes["_overall"] += 1
cur_sizes.setdefault(outcome, 0)
cur_sizes[outcome] += 1
cur_sizes.setdefault(action, 0)
cur_sizes[action] += 1
if outcome in ("BUG", "ERROR"):
cur_sizes["BUG/ERR"] += 1
if pred_act_in == label_act_in:
cur_matches["_overall"] += 1
cur_matches.setdefault(outcome, 0)
cur_matches[outcome] += 1
cur_matches.setdefault(action, 0)
cur_matches[action] += 1
if outcome in ("BUG", "ERROR"):
cur_matches["BUG/ERR"] += 1
print(sizes)
all_keys = {key for cur_matches in matches for key in cur_matches}
for key in sorted(all_keys):
accs = np.array([cur_matches[key] / cur_sizes[key] for cur_matches, cur_sizes in zip(matches, sizes) if key in cur_matches])
print(f"{key} - avg: {accs.mean():.3f}, std: {accs.std():.3f}")
def evaluate_ted(model_name: str, task: DownstreamTask, options_dict: dict):
options = TrainOptions(options_dict)
all_teds = []
all_accs = []
all_val_match = []
for fold in range(5):
print("Fold", fold + 1)
# Load saved labels and predictions
postfix = "_formulas" if options.eval_formulas else ""
pred_filename = f"results/preds_{model_name}{postfix}_{fold}.txt"
with open(pred_filename, encoding="utf-8") as pred_file:
preds = [("<m> " if options.eval_formulas else "") + pred.strip() + ("" if pred.strip().endswith("</m>") else " </m>") for pred in pred_file]
# Convert sample strings to OPTs via pre-processing pipeline
batch_size = 30
err_data = {}
processed_preds: List[Article] = []
for batch_start_idx in tqdm(list(range(0, len(preds), batch_size))):
processed_preds += process_raw_text(preds[batch_start_idx : batch_start_idx + batch_size], err_data)
print(err_data)
# Load dataset for targets
if task == DownstreamTask.HEADLINES:
headlines = get_headline_data("test", options)
test_data = GenTaskDataset(headlines, task, options)
elif task == DownstreamTask.FEEDBACK:
problems, _, _, test_samples = get_feedback_data(fold)
test_data = FeedbackDataset(test_samples, problems, options)
elif task == DownstreamTask.MWP:
_, _, test_samples = get_mwp_data(fold)
test_data = GenTaskDataset(test_samples, task, options)
else:
raise Exception(f"Unsupported task {task}")
# Perform post-processing via tokenizer, and then convert back to OPTs and calculate TED
label_trees: List[DecodeTreeNode] = []
pred_trees: List[DecodeTreeNode] = []
failed_conversions = []
missing_formula = []
for sample_idx, (label, pred) in enumerate(zip(test_data, processed_preds)):
if pred is None:
failed_conversions.append(sample_idx)
continue
if not pred["formulas"]:
missing_formula.append(sample_idx)
continue
if len(pred["formulas"]) > 1:
print("More than 1 formula in sample:", sample_idx)
try:
pred_seq = tokenize_formula(pred["formulas"][0]["opt"], options)
except ExceedMaxDepth:
print("Exceeded max depth")
failed_conversions.append(sample_idx)
continue
label_seq = label.split_at(label.meta["prompt_length"])[1]
label_trees.append(get_tree(label_seq.token_ids, label_seq.token_types))
pred_trees.append(get_tree(pred_seq.token_ids, pred_seq.token_types))
ted = calculate_ted(label_trees, pred_trees)
acc = sum([trees_equal(label_tree, pred_tree) for label_tree, pred_tree in zip(label_trees, pred_trees)]) / len(label_trees)
if task == DownstreamTask.MWP:
pred_vals = []
for pred_tree in pred_trees:
try:
pred_vals.append(eval_tree_value(pred_tree, options))
except Exception as exc:
print(exc)
pred_vals.append(None)
val_match = sum([
eval_tree_value(label_tree, options) == pred_val
for label_tree, pred_val in zip(label_trees, pred_vals)
]) / len(label_trees)
else:
val_match = 0
all_teds.append(ted)
all_accs.append(acc)
all_val_match.append(val_match)
print(f"{fold} - TED: {ted:.3f}, Tree Match: {acc:.3f}, Val Match: {val_match:.3f}, Failed: {failed_conversions}, Missing formula: {missing_formula}")
teds_np = np.array(all_teds)
accs_np = np.array(all_accs)
val_np = np.array(all_val_match)
print(f"TED - Average: {teds_np.mean():.3f}, STD: {teds_np.std():.3f}")
print(f"Tree Match - Average: {accs_np.mean():.3f}, STD: {accs_np.std():.3f}")
print(f"Val Match - Average: {val_np.mean():.3f}, STD: {val_np.std():.3f}")