-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathdnnl_common.cpp
1943 lines (1695 loc) · 72.9 KB
/
dnnl_common.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************************
* Copyright 2017-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm> // for std::reverse and std::copy
#include <functional> // for std::bind and std::placeholders
#include <list>
#include <numeric>
#include <string> // for std::string
#include <utility> // for std::pair
#include <vector> // for std::vector
#include <assert.h>
#include "oneapi/dnnl/dnnl.hpp"
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL
#include "oneapi/dnnl/dnnl_ocl.hpp"
#elif DNNL_GPU_RUNTIME == DNNL_RUNTIME_DPCPP
#include "oneapi/dnnl/dnnl_sycl.hpp"
#endif
#if DNNL_CPU_THREADING_RUNTIME == DNNL_RUNTIME_THREADPOOL
#include "oneapi/dnnl/dnnl_threadpool.h"
#endif
#ifndef DNNL_DISABLE_PRIMITIVE_CACHE
#include "src/common/primitive_cache.hpp"
#endif
#include "cpu/platform.hpp"
#include "tests/test_thread.hpp"
#include "dnnl_common.hpp"
#include "dnnl_memory.hpp"
#include "utils/cold_cache.hpp"
#include "utils/dnnl_query.hpp"
#include "utils/fill.hpp"
#include "utils/stream_kind.hpp"
extern "C" dnnl_status_t dnnl_impl_notify_profiling_complete(
dnnl_stream_t stream);
int check_pd_cache(const_dnnl_primitive_desc_t pd, res_t *res) {
// Disable this check for threadpool. A threadpool is always defined in
// validation infrastructure but creates primitives in a separate
// environment that doesn't have threadpool enabled. Thus, it utilizes a
// specified number of threads in a testing environment that is different
// from the number of cores per socket (internal logic for primitive
// creation). This will cause this check to fail as the number of threads
// is used in the primitive cache key.
#if !defined(DNNL_DISABLE_PRIMITIVE_CACHE) \
&& DNNL_CPU_THREADING_RUNTIME != DNNL_RUNTIME_THREADPOOL
int capacity = 0;
DNN_SAFE(dnnl_get_primitive_cache_capacity(&capacity), FAIL);
if (capacity && !dnnl::impl::is_pd_in_cache(pd)) {
res->state = FAILED;
BENCHDNN_PRINT(0, "%s\n",
"Error: primitive descriptor is expected to be fetched from "
"the primitive cache");
return FAIL;
}
#endif
return OK;
}
int check_primitive_cache(dnnl_primitive_t p, res_t *res) {
// See the comment in `check_pd_cache`.
#if !defined(DNNL_DISABLE_PRIMITIVE_CACHE) \
&& DNNL_CPU_THREADING_RUNTIME != DNNL_RUNTIME_THREADPOOL
int capacity = 0;
DNN_SAFE(dnnl_get_primitive_cache_capacity(&capacity), WARN);
if (capacity && !dnnl::impl::is_primitive_in_cache(p)) {
res->state = FAILED;
BENCHDNN_PRINT(0, "%s\n",
"Error: primitive is expected to be fetched from the primitive "
"cache");
return FAIL;
}
#endif
return OK;
}
size_t set_primitive_cache_capacity_without_clearing(size_t capacity) {
#ifndef DNNL_DISABLE_PRIMITIVE_CACHE
return dnnl::impl::set_primitive_cache_capacity_without_clearing(capacity);
#endif
return size_t(0);
}
int get_cache_blob_id(
std::vector<uint8_t> &cache_blob_id, const_dnnl_primitive_desc_t pd) {
dnnl_dim_t count;
const uint8_t *c_id;
DNN_SAFE(dnnl_primitive_desc_query(
pd, dnnl_query_cache_blob_id_size_s64, 0, (void *)&count),
WARN);
DNN_SAFE(dnnl_primitive_desc_query(
pd, dnnl_query_cache_blob_id, 0, (void **)&c_id),
WARN);
cache_blob_id = {c_id, c_id + count};
return OK;
}
int get_cache_blob(std::vector<uint8_t> &cache_blob, dnnl_primitive_t prim) {
size_t size = 0;
DNN_SAFE(dnnl_primitive_get_cache_blob(prim, &size, nullptr), WARN);
cache_blob.resize(size);
DNN_SAFE(dnnl_primitive_get_cache_blob(prim, &size, cache_blob.data()),
WARN);
return OK;
}
struct lru_cache_t {
lru_cache_t(size_t capacity) : capacity_(capacity) {}
const std::vector<uint8_t> &get(const std::vector<uint8_t> &key) {
auto it = cache_mapper_.find(key);
if (it == cache_mapper_.end()) { return dummy_; }
cache_list_.splice(cache_list_.begin(), cache_list_, it->second);
return cache_list_.front().value_;
}
void add(const std::vector<uint8_t> &key,
const std::vector<uint8_t> &value) {
assert(!cache_mapper_.count(key));
if (cache_mapper_.size() >= capacity_) {
cache_mapper_.erase(cache_list_.back().key_);
cache_list_.pop_back();
}
cache_list_.emplace_front(key, value);
cache_mapper_.insert({key, cache_list_.begin()});
}
private:
lru_cache_t(const lru_cache_t &other) = delete;
lru_cache_t(lru_cache_t &&other) = delete;
lru_cache_t &operator=(const lru_cache_t &other) = delete;
lru_cache_t &operator=(lru_cache_t &&other) = delete;
struct entry_t {
entry_t(const std::vector<uint8_t> &key,
const std::vector<uint8_t> &value)
: key_(key), value_(value) {}
std::vector<uint8_t> key_;
std::vector<uint8_t> value_;
};
size_t capacity_;
std::list<entry_t> cache_list_;
std::map<std::vector<uint8_t>, std::list<entry_t>::iterator> cache_mapper_;
const std::vector<uint8_t> dummy_;
};
lru_cache_t &get_test_cache() {
static lru_cache_t cache(1024);
return cache;
}
int test_persistent_cache_api(
benchdnn_dnnl_wrapper_t<dnnl_primitive_t> &prim, res_t *res) {
auto pd = query_pd(prim);
// 0. check memory descriptor serialization API
// Limiting to weights md should have good md kind coverage and
// limit overhead
{
dnnl_memory_desc_t new_md;
size_t sz = 0;
auto wei_md = query_md(pd, dnnl_query_weights_md);
dnnl_memory_desc_get_blob(nullptr, &sz, wei_md);
std::vector<uint8_t> md_blob(sz);
dnnl_memory_desc_get_blob(md_blob.data(), &sz, wei_md);
dnnl_memory_desc_create_with_blob(&new_md, md_blob.data());
auto mew_mdw = make_benchdnn_dnnl_wrapper(new_md);
if (dnnl_memory_desc_equal(wei_md, new_md) == 0)
return res->state = FAILED, FAIL;
}
// Start testing persistent cache API.
if (!is_gpu() || (is_gpu() && DNNL_GPU_RUNTIME != DNNL_RUNTIME_OCL)) {
return OK;
}
// 1. Disable primitive cache to make sure that the next primitive will
// be created from the cache blob and not fetched from the primitive cache.
const auto old_capacity = set_primitive_cache_capacity_without_clearing(0);
// 2. Get cache blob ID to use it as a key for the `test_cache`.
std::vector<uint8_t> cache_blob_id;
auto st = get_cache_blob_id(cache_blob_id, pd);
if (st != OK) return res->state = FAILED, FAIL;
// 3. Check if a cache blob for the obtained cache blob ID is present in the
// `test_cache`.
// a) If the cache blob is found the primitive is created from it.
// b) If the cache blob is not found then get it from the previously
// created primitive, store it in the cache and create the primitive
// from it.
dnnl_primitive_t p {};
auto &cache = get_test_cache();
auto cache_value = cache.get(cache_blob_id);
if (!cache_value.empty()) {
const size_t size = cache_value.size();
const uint8_t *cache_blob = cache_value.data();
auto dnnl_st = dnnl_primitive_create_from_cache_blob(
&p, pd, size, cache_blob);
if (dnnl_st != dnnl_success) return res->state = FAILED, FAIL;
} else {
std::vector<uint8_t> cache_blob;
st = get_cache_blob(cache_blob, prim);
if (st != OK) return res->state = FAILED, FAIL;
// The cross-engine and direct copy reorders are special primitives that
// may contain no kernels therefore the cache blob will always be empty,
// which is the correct behavior.
if (cache_blob.empty()) {
set_primitive_cache_capacity_without_clearing(old_capacity);
if (query_prim_kind(pd) == dnnl_reorder
&& (res->impl_name.find("cross_engine") != std::string::npos
|| res->impl_name.find("direct_copy")
!= std::string::npos))
return OK;
BENCHDNN_PRINT(
0, "error: %s\n", "cache blob is not expected to be empty");
res->state = FAILED;
return FAIL;
}
auto dnnl_st = dnnl_primitive_create_from_cache_blob(
&p, pd, cache_blob.size(), cache_blob.data());
if (dnnl_st != dnnl_success) return res->state = FAILED, FAIL;
cache.add(cache_blob_id, cache_blob);
}
prim.reset(p);
// 4. Restore the original primitive cache capacity to make it functional.
set_primitive_cache_capacity_without_clearing(old_capacity);
return OK;
}
// Engine kind used to run oneDNN primitives for testing
dnnl_engine_kind_t engine_tgt_kind = dnnl_cpu;
// Engine index used to run oneDNN primitives for testing
size_t engine_index = 0;
// CPU ISA specific hints : none by default
isa_hints_t hints {isa_hints_t::none};
memory_kind_ext_t memory_kind {default_memory_kind};
int default_num_streams = 1;
int num_streams = default_num_streams;
void init_isa_settings() {
if (hints.get() == isa_hints_t::no_hints) {
DNN_SAFE_V(dnnl_set_cpu_isa_hints(dnnl_cpu_isa_no_hints));
} else if (hints.get() == isa_hints_t::prefer_ymm) {
auto status = dnnl_set_cpu_isa_hints(dnnl_cpu_isa_prefer_ymm);
// Unimplemented is a valid status for non-x64
if (status == dnnl_success || status == dnnl_unimplemented) return;
DNN_SAFE_V(status);
} else {
// Do nothing when hints == none
assert(hints.get() == isa_hints_t::none);
}
}
// This ctor is responsible to provide proper pointers to memory objects for
// correspondent arguments. It is important for in-place cases when a single
// object should be used as SRC and DST.
// `mem_map` object is an owner of memory objects and can't use the same object
// for SRC and DST while `args` is a proxy with pointers to memories and may
// easily change what to pick for a specific arg.
args_t::args_t(const dnn_mem_map_t &mem_map) {
for (const auto &map_entry : mem_map) {
const dnn_mem_t *mem_ptr = &map_entry.second;
for (int inplace_arg : {DNNL_ARG_DST, DNNL_ARG_DIFF_SRC}) {
if (map_entry.first != inplace_arg || map_entry.second) continue;
auto it = mem_map.begin();
switch (inplace_arg) {
case DNNL_ARG_DST:
it = mem_map.find(DNNL_ARG_SRC);
// May happen that source argument is different.
if (it == mem_map.end())
it = mem_map.find(DNNL_ARG_MULTIPLE_SRC);
break;
case DNNL_ARG_DIFF_SRC:
it = mem_map.find(DNNL_ARG_DIFF_DST);
break;
default: assert(!"unsupported arg"); break;
}
if (it == mem_map.end()) {
BENCHDNN_PRINT(0, "%s\n", "Inplace substitution failed.");
SAFE_V(FAIL);
}
mem_ptr = &((*it).second); // Update reference with in-place memory.
break;
}
args_.emplace_back(map_entry.first, mem_ptr);
}
}
args_t &args_t::set(int arg, const dnn_mem_t &mem) {
args_.emplace_back(arg, &mem);
return *this;
}
const dnn_mem_t &args_t::find(int arg) const {
static dnn_mem_t empty_stub;
for (const auto &e : args_) {
if (e.first == arg) return *(e.second);
}
return empty_stub;
}
void args_t::replace(int arg, const dnn_mem_t *mem) {
for (auto &e : args_) {
if (e.first == arg) {
e.second = mem;
break;
}
}
}
// Unmap before passing the memory to execute
void execute_unmap_args(
const args_t &args, std::vector<dnnl_exec_arg_t> &dnnl_args) {
dnnl_args.resize(args.size());
for (int i = 0; i < args.size(); ++i) {
if (args.dnn_mem(i).is_mapped()) args.dnn_mem(i).unmap();
dnnl_args[i].arg = args.arg(i);
dnnl_args[i].memory = args.dnn_mem(i).m_;
}
}
// Map the memory back after execute
void execute_map_args(const args_t &args) {
if (has_bench_mode_modifier(mode_modifier_t::no_ref_memory)) return;
for (int i = 0; i < args.size(); ++i)
if (!args.dnn_mem(i).is_mapped()) args.dnn_mem(i).map();
}
int execute_and_wait(perf_function_t &exec_func, const dnnl_engine_t &engine,
const args_t &args, res_t *res) {
stream_t stream(engine);
std::vector<dnnl_exec_arg_t> dnnl_args;
TIME_EXECUTE(execute_unmap_args(args, dnnl_args));
dnnl_status_t status = dnnl_runtime_error;
bool run_regular_exec = true;
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_DPCPP
while (execution_mode == execution_mode_t::graph && is_gpu(engine)) {
void *queue_ptr;
DNN_SAFE(dnnl_sycl_interop_stream_get_queue(stream, &queue_ptr), CRIT);
sycl::queue queue = *static_cast<sycl::queue *>(queue_ptr);
const bool can_run_sycl_graph = queue.get_device().get_backend()
== sycl::backend::ext_oneapi_level_zero;
if (!can_run_sycl_graph) break;
BENCHDNN_PRINT(
2, "%s\n", "[INFO] Using experimental SYCL graph execution.");
sycl::ext::oneapi::experimental::command_graph graph {
queue.get_context(), queue.get_device()};
graph.begin_recording(queue);
status = exec_func(stream, dnnl_args);
graph.end_recording(queue);
DNN_SAFE(dnnl_stream_wait(stream), CRIT);
auto exec = graph.finalize();
queue.ext_oneapi_graph(exec).wait();
// SYCL graph feature completed submission and execution, no need to
// have a regular run.
run_regular_exec = false;
break;
}
#endif
if (run_regular_exec) {
TIME_EXECUTE(status = exec_func(stream, dnnl_args));
TIME_EXECUTE(DNN_SAFE(dnnl_stream_wait(stream), CRIT));
}
if (res) res->state = EXECUTED;
TIME_EXECUTE(execute_map_args(args));
if (status != dnnl_success) {
if (res) res->state = FAILED;
return FAIL;
}
return OK;
}
dnnl_status_t primitive_executor(dnnl_primitive_t prim,
const dnnl_stream_t &stream,
const std::vector<dnnl_exec_arg_t> &dnnl_args) {
return dnnl_primitive_execute(
prim, stream, (int)dnnl_args.size(), dnnl_args.data());
}
int execute_and_wait(dnnl_primitive_t prim, const args_t &args, res_t *res) {
perf_function_t exec_func = std::bind(&primitive_executor, prim,
std::placeholders::_1, std::placeholders::_2);
auto pd = query_pd(prim);
auto engine = query_engine(pd);
return execute_and_wait(exec_func, engine, args, res);
}
void reset_gpu_profiling(dnnl_stream_t stream) {
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL \
|| DNNL_GPU_RUNTIME == DNNL_RUNTIME_SYCL
DNN_SAFE_V(dnnl_reset_profiling(stream));
#endif
}
int get_gpu_profiling_info(dnnl_stream_t stream, std::vector<uint64_t> &nsecs,
std::vector<uint64_t> &cycles, int expected_num_entries) {
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL \
|| DNNL_GPU_RUNTIME == DNNL_RUNTIME_SYCL
dnnl_profiling_data_kind_t undef_kind {};
dnnl_profiling_data_kind_t time_kind {};
// This is an internal data kind.
dnnl_profiling_data_kind_t cycles_kind
= dnnl::impl::profiling_data_kind::cycles;
#ifndef DNNL_EXPERIMENTAL_PROFILING
undef_kind = 0;
time_kind = 1;
#else
undef_kind = dnnl_profiling_data_kind_undef;
time_kind = dnnl_profiling_data_kind_time;
#endif
int num_entries = 0;
DNN_SAFE(dnnl_query_profiling_data(
stream, undef_kind, &num_entries, nullptr),
CRIT);
if (expected_num_entries != -1 && num_entries != expected_num_entries) {
BENCHDNN_PRINT(0,
"ERROR: profiling entries mismatch, expected: %d entries but "
"got %d entries\n",
expected_num_entries, num_entries);
return FAIL;
}
DNN_SAFE(dnnl_query_profiling_data(
stream, time_kind, &num_entries, nsecs.data()),
CRIT);
nsecs.resize(num_entries);
cycles.resize(num_entries);
DNN_SAFE(dnnl_query_profiling_data(
stream, time_kind, &num_entries, nsecs.data()),
CRIT);
DNN_SAFE(dnnl_query_profiling_data(
stream, cycles_kind, &num_entries, cycles.data()),
CRIT);
#endif
return OK;
}
void notify_gpu_profiling_complete(dnnl_stream_t stream) {
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL \
|| DNNL_GPU_RUNTIME == DNNL_RUNTIME_SYCL
DNN_SAFE_V(dnnl_impl_notify_profiling_complete(stream));
#endif
}
void finalize() {
finalize_tbb();
}
inline int measure_perf_individual(timer::timer_t &t, dnnl_stream_t stream,
perf_function_t &perf_func, std::vector<dnnl_exec_arg_t> &dnnl_args) {
cold_cache_t cold_cache(dnnl_args, stream);
t.reset();
while (true) {
if (!cold_cache.update_dnnl_args(dnnl_args)) break;
t.start();
DNN_SAFE(perf_func(stream, dnnl_args), WARN);
t.stamp();
if (should_stop(t)) break;
}
return OK;
}
inline int measure_perf_aggregate(timer::timer_t &t,
const std::vector<stream_t> &v_stream, perf_function_t &perf_func,
std::vector<std::vector<dnnl_exec_arg_t>> &dnnl_args) {
// There seems to be some limit to how many kernels can be queued in OCL
// builds and 4096 seems to be a nice number under that limit.
// Otherwise, hangs in perf validation are observed due to many kernels
// being queued at once.
static constexpr int max_batch_times = 4096;
std::vector<cold_cache_t> cold_cache(num_streams);
// Nvidia/AMD don't support profiling.
const bool use_profiling = is_gpu() && !is_nvidia_gpu() && !is_amd_gpu();
for (size_t j = 0; j < v_stream.size(); j++) {
// Warm-up run, this is not measured due to possibility the associated
// kernel has not been built and skews the results.
DNN_SAFE(perf_func(v_stream[j], dnnl_args[j]), WARN);
DNN_SAFE(dnnl_stream_wait(v_stream[j]), CRIT);
cold_cache[j] = cold_cache_t(dnnl_args[j], v_stream[j]);
if (use_profiling) reset_gpu_profiling(v_stream[j]);
}
bool is_first_loop = true;
int cur_batch_times
= fix_times_per_prb ? fix_times_per_prb : min_times_per_prb;
t.reset();
while (true) {
// Keep separate var due to a `break` inside the loop.
int execute_count = 0;
// Keep inner loop over streams for better submission overlapping.
for_(int i = 0; i < cur_batch_times; i++)
for (size_t j = 0; j < v_stream.size(); j++) {
if (!cold_cache[j].update_dnnl_args(dnnl_args[j])) break;
DNN_SAFE(perf_func(v_stream[j], dnnl_args[j]), WARN);
execute_count++;
}
for (size_t j = 0; j < v_stream.size(); j++) {
DNN_SAFE(dnnl_stream_wait(v_stream[j]), CRIT);
}
if (use_profiling) {
std::vector<std::vector<uint64_t>> v_nsecs(num_streams);
std::vector<std::vector<uint64_t>> v_cycles(num_streams);
bool nsecs_is_empty = false;
for (size_t j = 0; j < v_stream.size(); j++) {
SAFE(get_gpu_profiling_info(v_stream[j], v_nsecs[j],
v_cycles[j], execute_count),
CRIT);
reset_gpu_profiling(v_stream[j]);
// Profiling should have information to report, otherwise, stop.
if (v_nsecs[j].empty()) {
nsecs_is_empty = true;
BENCHDNN_PRINT(0, "%s\n",
"WARNING: no counters were found during "
"profiling.");
break;
}
}
if (nsecs_is_empty) break;
for_(size_t j = 0; j < v_stream.size(); j++)
for (size_t i = 0; i < v_nsecs[j].size(); i++) {
t.stop(1, (int64_t)v_cycles[j][i], v_nsecs[j][i] / 1e6);
}
} else {
t.stamp(cur_batch_times * num_streams);
}
// Assumption that for each stream cold_cache acts same.
if (should_stop(t) || cold_cache[0].should_stop()) break;
// Adjust cur_batch_times after the first batch run
if (is_first_loop) {
double ms_min = t.ms(timer::timer_t::min);
// Heuristic: try to use ~5 batch runs for the whole benchmark
int batch_times_heuristic = (ms_min == 0.0)
? INT_MAX
: MAX2(1,
(int)((max_ms_per_prb - t.total_ms()) / ms_min
/ 5));
cur_batch_times = MIN2(max_batch_times, batch_times_heuristic);
is_first_loop = false;
}
}
if (use_profiling) {
for (size_t j = 0; j < v_stream.size(); j++) {
notify_gpu_profiling_complete(v_stream[j]);
}
}
return OK;
}
int measure_perf(const thr_ctx_t &ctx, res_t *res, perf_function_t &perf_func,
args_t &args) {
if (!has_bench_mode_bit(mode_bit_t::perf)) return OK;
const auto &engine = get_test_engine();
std::vector<stream_t> v_stream(num_streams);
for (int i = 0; i < num_streams; i++)
v_stream[i] = stream_t(engine, ctx.get_interop_obj());
std::vector<std::vector<dnnl_exec_arg_t>> dnnl_args(num_streams);
std::vector<dnn_mem_map_t> mem_map(num_streams);
std::vector<args_t> v_args(num_streams);
v_args[0] = args;
for (int j = 1; j < num_streams; j++) {
for (int i = 0; i < args.size(); i++) {
int arg = args.arg(i);
const auto &m = args.dnn_mem(i);
mem_map[j].emplace(arg, dnn_mem_t(m.md_, engine));
SAFE(mem_map[j].at(arg).reorder(m), WARN);
}
v_args[j] = args_t(mem_map[j]);
execute_unmap_args(v_args[j], dnnl_args[j]);
}
execute_unmap_args(args, dnnl_args[0]);
auto &t = res->timer_map.perf_timer();
// For non-DPCPP CPU: measure individual iterations.
// For DPCPP CPU and GPU: measure iterations in batches to hide driver
// overhead. DPCPP CPU follows the model of GPU, thus, handled similar.
int ret = OK;
if (is_cpu() && !is_sycl_engine(engine)) {
ret = execute_in_thr_ctx(ctx, measure_perf_individual, t, v_stream[0],
perf_func, dnnl_args[0]);
} else {
ret = execute_in_thr_ctx(
ctx, measure_perf_aggregate, t, v_stream, perf_func, dnnl_args);
}
if (ret != OK) res->state = FAILED;
execute_map_args(args);
for (int j = 1; j < num_streams; j++) {
execute_map_args(v_args[j]);
}
return ret;
}
int measure_perf(
const thr_ctx_t &ctx, res_t *res, dnnl_primitive_t prim, args_t &args) {
perf_function_t perf_func = std::bind(&primitive_executor, prim,
std::placeholders::_1, std::placeholders::_2);
return measure_perf(ctx, res, perf_func, args);
}
std::vector<float> prepare_po_vals(const dnn_mem_t &dst_m, const args_t &args,
const std::vector<std::pair<int, int>> &v_po_masks,
const size_t dst_off) {
if (v_po_masks.empty()) return std::vector<float>();
std::vector<float> v_vals(v_po_masks.size());
for (size_t d = 0; d < v_po_masks.size(); ++d) {
const auto po_offset = dst_m.get_idx(dst_off, v_po_masks[d].second);
const float val = args.find(v_po_masks[d].first).get_elem(po_offset);
v_vals[d] = val;
}
return v_vals;
}
bool check_md_consistency_with_tag(
const_dnnl_memory_desc_t md, const std::string &tag) {
auto md_new_tag = dnn_mem_t::init_md(
query_md_ndims(md), query_md_dims(md), query_md_data_type(md), tag);
return dnnl_memory_desc_equal(md_new_tag, md);
}
void skip_unimplemented_data_type(
const std::vector<dnnl_data_type_t> &v_dt, dir_t dir, res_t *res) {
const bool has_f64_support = is_f64_supported();
#if DNNL_CPU_RUNTIME != DNNL_RUNTIME_NONE
using namespace dnnl::impl::cpu::platform;
// bf16 is supported on AVX512-CORE+
const bool has_bf16_support = is_gpu()
|| (is_cpu() && has_data_type_support(dnnl_bf16)
&& IMPLICATION(!(dir & FLAG_INF),
has_training_support(dnnl_bf16)));
const bool has_f16_support = is_gpu()
|| (is_cpu() && has_data_type_support(dnnl_f16)
&& IMPLICATION(
!(dir & FLAG_INF), has_training_support(dnnl_f16)));
const bool has_e8m0_support
= is_gpu() || (is_cpu() && has_data_type_support(dnnl_e8m0));
const bool has_f4_e2m1_support
= is_gpu() || (is_cpu() && has_data_type_support(dnnl_f4_e2m1));
const bool has_f4_e3m0_support
= is_gpu() || (is_cpu() && has_data_type_support(dnnl_f4_e3m0));
const bool has_f8_e5m2_support = is_gpu()
|| (is_cpu() && has_data_type_support(dnnl_f8_e5m2)
&& (dir & FLAG_INF));
const bool has_f8_e4m3_support = is_gpu()
|| (is_cpu() && has_data_type_support(dnnl_f8_e4m3)
&& (dir & FLAG_INF));
#else
const bool has_bf16_support = is_gpu();
// f16 is supported on GPU for inference only.
const bool has_f16_support = is_gpu() && (dir & FLAG_FWD);
const bool has_f4_e2m1_support = is_gpu();
const bool has_f4_e3m0_support = false;
const bool has_e8m0_support = is_gpu();
const bool has_f8_e5m2_support = is_gpu();
const bool has_f8_e4m3_support = is_gpu();
#endif
for (const auto &i_dt : v_dt) {
bool need_skip = false;
switch (i_dt) {
case dnnl_bf16: need_skip = !has_bf16_support; break;
case dnnl_f16: need_skip = !has_f16_support; break;
case dnnl_f64: need_skip = !has_f64_support; break;
case dnnl_e8m0: need_skip = !has_e8m0_support; break;
case dnnl_f4_e2m1: need_skip = !has_f4_e2m1_support; break;
case dnnl_f4_e3m0: need_skip = !has_f4_e3m0_support; break;
case dnnl_f8_e5m2: need_skip = !has_f8_e5m2_support; break;
case dnnl_f8_e4m3: need_skip = !has_f8_e4m3_support; break;
default: break;
}
if (need_skip) {
res->state = SKIPPED;
res->reason = skip_reason::data_type_not_supported;
return;
}
}
}
void skip_unimplemented_sum_po(const attr_t &attr, res_t *res,
dnnl_primitive_kind_t pkind, dnnl_data_type_t src_dt,
dnnl_data_type_t dst_dt) {
const auto &po = attr.post_ops;
if (po.is_def()) return;
const int first_sum_idx = po.find(attr_t::post_ops_t::SUM);
if (first_sum_idx == -1) return;
const auto sum_dt = po.entry[first_sum_idx].sum.dt;
for (int idx = 0; idx < po.len(); ++idx) {
const auto &e = po.entry[idx];
if (e.is_sum_kind()) {
// API requirements
if (e.sum.zero_point != 0) {
// Sum with zero-point is only supported for int8
if (!is_integral_dt(src_dt)) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
} else {
// Only quantized sum operand can have zero point
const dnnl_data_type_t e_sum_dt
= e.sum.dt == dnnl_data_type_undef ? dst_dt
: e.sum.dt;
if (!is_integral_dt(e_sum_dt)) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
}
}
// Sum with zero-point is not supported on GPU
if (is_gpu() && e.sum.zero_point != 0) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
break;
}
// Each sum must have same data on CPU
if (is_cpu() && e.sum.dt != sum_dt) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
break;
}
// Sum must have data type with the same size like dst on both
if (dst_dt != dnnl_data_type_undef && sum_dt != dnnl_data_type_undef
&& dnnl_data_type_size(dst_dt)
!= dnnl_data_type_size(e.sum.dt)) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
}
}
}
void skip_unimplemented_prelu_po(
const attr_t &attr, res_t *res, dnnl_primitive_kind_t pkind) {
const auto &po = attr.post_ops;
if (po.is_def()) return;
const int first_prelu_idx = po.find(attr_t::post_ops_t::PRELU);
if (first_prelu_idx == -1) return;
switch (pkind) {
case dnnl_convolution:
case dnnl_deconvolution:
case dnnl_inner_product:
case dnnl_matmul: return; break;
default:
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
break;
}
}
void skip_unimplemented_arg_scale(const attr_t &attr, res_t *res) {
for (const auto &arg_s : attr.scales.scales) {
if (arg_s.second.policy != policy_t::COMMON) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
}
}
void skip_invalid_inplace(res_t *res, dnnl_data_type_t sdt,
dnnl_data_type_t ddt, const std::string &stag,
const std::string &dtag) {
// Note: existing implementation of dnn_mem_t doesn't allow to track the
// fact that two different objects pointing on the same SYCL memory should
// not map/unmap both objects.
// This leads to the restriction that memory descriptors should coincide,
// thus, a single memory object would be used for in-place validation.
// General limitation of in-place mode is having same amount of memory on
// input and output.
if (sdt != ddt) {
res->state = SKIPPED;
res->reason = skip_reason::invalid_case;
return;
}
if (dtag == tag::any) return;
if (stag != dtag) {
res->state = SKIPPED;
res->reason = skip_reason::invalid_case;
return;
}
}
// Check ensures that attributes don't cause implementation fallback
int check_same_pd(const dnnl_primitive_desc_t &pd_no_attr, res_t *res) {
const auto pd_no_attr_name = query_impl_info(pd_no_attr);
if (res->impl_name == pd_no_attr_name) return OK;
res->state = FAILED;
BENCHDNN_PRINT(0,
"ERROR: attributes caused impl fallback from [%s] to [%s]\n",
pd_no_attr_name.c_str(), res->impl_name.c_str());
return FAIL;
}
// Checks if unexpected reference implementation was hit.
int check_ref_impl_hit(res_t *res) {
if (!check_ref_impl) return OK;
// Nvidia, AMD and Generic backends use reference implementations to fill
// gaps in feature support.
if (is_nvidia_gpu() || is_amd_gpu() || is_generic_gpu()) return OK;
const auto &impl_name = res->impl_name;
if (impl_name.find("ref") != std::string::npos) {
res->state = FAILED;
res->reason = "Ref Impl Not Expected";
return FAIL;
}
return OK;
}
bool is_cpu(const dnnl_engine_t &engine) {
return query_engine_kind(engine) == dnnl_cpu;
}
bool is_gpu(const dnnl_engine_t &engine) {
return query_engine_kind(engine) == dnnl_gpu;
}
bool is_sycl_engine(const dnnl_engine_t &engine) {
if (is_cpu(engine)) return DNNL_CPU_RUNTIME == DNNL_RUNTIME_DPCPP;
if (is_gpu(engine)) return DNNL_GPU_RUNTIME == DNNL_RUNTIME_DPCPP;
return false;
}
bool is_opencl_engine(const dnnl_engine_t &engine) {
if (is_gpu(engine)) return DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL;
return false;
}
bool is_nvidia_gpu(const dnnl_engine_t &engine) {
#if defined(DNNL_WITH_SYCL) && DNNL_GPU_VENDOR == DNNL_VENDOR_NVIDIA
if (!is_gpu(engine)) return false;
constexpr int nvidia_vendor_id = 0x10DE;
auto eng = dnnl::engine(engine, true);
auto device = dnnl::sycl_interop::get_device(eng);
const auto eng_vendor_id
= device.get_info<::sycl::info::device::vendor_id>();
return eng_vendor_id == nvidia_vendor_id;
#endif
return false;
}
bool is_amd_gpu(const dnnl_engine_t &engine) {
#if defined(DNNL_WITH_SYCL) && DNNL_GPU_VENDOR == DNNL_VENDOR_AMD
if (!is_gpu(engine)) return false;
constexpr int amd_vendor_id = 0x1002;
auto eng = dnnl::engine(engine, true);
auto device = dnnl::sycl_interop::get_device(eng);
const auto eng_vendor_id
= device.get_info<::sycl::info::device::vendor_id>();
return eng_vendor_id == amd_vendor_id;
#endif
return false;
}
bool is_generic_gpu(const dnnl_engine_t &engine) {
#if defined(DNNL_WITH_SYCL) && DNNL_GPU_VENDOR == DNNL_VENDOR_GENERIC
return is_gpu(engine);
#endif
return false;
}
bool is_f64_supported(const dnnl_engine_t &engine) {
if (!is_gpu(engine)) return false;
if (is_nvidia_gpu(engine) || is_amd_gpu(engine)) return false;
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_DPCPP
if (is_sycl_engine(engine)) {
auto eng = dnnl::engine(engine, true);
auto dev = dnnl::sycl_interop::get_device(eng);
return dev.has(::sycl::aspect::fp64);
}
#endif
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL
if (is_opencl_engine(engine)) {
auto eng = dnnl::engine(engine, true);
cl_device_id dev = dnnl::ocl_interop::get_device(eng);
size_t param_size = 0;
cl_int err = clGetDeviceInfo(
dev, CL_DEVICE_EXTENSIONS, 0, nullptr, ¶m_size);
if (err != CL_SUCCESS) return false;
std::string extension_string(param_size, '\0');
err = clGetDeviceInfo(dev, CL_DEVICE_EXTENSIONS, param_size,
&extension_string[0], ¶m_size);
if (err != CL_SUCCESS) return false;
return extension_string.find("cl_khr_fp64") != std::string::npos;
}
#endif
return false;
}
#if defined(_WIN32)
#include "windows.h"
size_t get_cpu_ram_size() {
MEMORYSTATUSEX s {};
s.dwLength = sizeof(s);
GlobalMemoryStatusEx(&s);
return s.ullTotalPhys;
}
#elif defined(__APPLE__) || defined(__FreeBSD__) || defined(__QNXNTO__)
#include <unistd.h>
#include <sys/sysctl.h>
size_t get_cpu_ram_size() {
#ifdef __APPLE__
int query_ram[] = {CTL_HW, HW_MEMSIZE};
#else
int query_ram[] = {CTL_HW, HW_PHYSMEM};
#endif
int query_ram_len = sizeof(query_ram) / sizeof(*query_ram);
size_t totalram = 0;
size_t length = sizeof(totalram);
sysctl(query_ram, query_ram_len, &totalram, &length, NULL, 0);
return totalram;
}
#else
#include <sys/sysinfo.h>
size_t get_cpu_ram_size() {
struct sysinfo s {};
sysinfo(&s);
return s.totalram;
}