-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathamx_blocking_heuristics.cpp
1087 lines (951 loc) · 44 KB
/
amx_blocking_heuristics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************************
* Copyright 2021-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "cpu/x64/matmul/amx_blocking_heuristics.hpp"
#include "cpu/matmul/gemm_based_common.hpp"
namespace dnnl {
namespace impl {
namespace cpu {
namespace x64 {
namespace matmul {
using namespace dnnl::impl::cpu::matmul;
using namespace dnnl::impl::memory_tracking::names;
using namespace dnnl::impl::utils;
using namespace data_type;
using namespace format_tag;
void matmul_amx_blocking_params_t::update_configuration(
brgemm_matmul_conf_t &bgmmc) const {
bgmmc.nthr_k = nthr_k_;
bgmmc.nthr_m = nthr_m_;
bgmmc.nthr_n = nthr_n_;
bgmmc.nthr_b = nthr_b_;
bgmmc.nthr = nthr_;
bgmmc.M_blk = m_blk_;
bgmmc.M_chunk_size = m_chunk_size_;
bgmmc.N_blk = n_blk_;
bgmmc.N_chunk_size = n_chunk_size_;
bgmmc.K_blk = k_blk_;
bgmmc.K_chunk_size = k_chunk_size_;
bgmmc.brgemm_batch_size = brgemm_batch_size_;
bgmmc.use_buffer_c = need_buf_c_;
bgmmc.use_buffer_a = need_buf_a_;
bgmmc.extendable_k = extendable_k_;
bgmmc.LDA = current_lda_;
bgmmc.is_a_nt = is_a_nt_;
bgmmc.is_b_nt = is_b_nt_;
bgmmc.set_nt = set_nt_;
bgmmc.is_macro_heuristics
= dynamic_cast<const matmul_amx_blocking_params_macro_t *>(this)
!= nullptr;
}
dim_t matmul_amx_blocking_params_t::get_actual_lda() const {
if (!need_buf_a_)
return treat_A_as_plain ? K : A_strides[1 - transposed_A] / a_dt_sz;
constexpr int bytes_in_cacheline = 64;
const int elems_in_cacheline = bytes_in_cacheline / a_dt_sz;
dim_t lda = rnd_up(k_blk_, elems_in_cacheline);
const bool is_big_2_pow = lda >= 512 && math::is_pow2(lda);
if (is_big_2_pow) lda += elems_in_cacheline;
return lda;
}
bool matmul_amx_blocking_params_t::is_buffer_c_required() const {
if (nthr_k_ > 1 && K > k_chunk_elems_) return true;
return ((acc_dt != dst_dt || with_sum)
&& (K > k_chunk_elems_ || K % k_blk_ > 0));
}
size_t matmul_amx_blocking_params_t::L2_threshold() {
return 3 * platform::get_per_core_cache_size(2) / 4;
}
size_t matmul_amx_blocking_params_t::L1_threshold() {
return 5 * platform::get_per_core_cache_size(1) / 6;
}
bool matmul_amx_blocking_params_macro_t::is_supported(
const brgemm_matmul_conf_t &bgmmc,
const brgemm_matmul_conf_utils_t &bm_conf_utils) {
// TODO: enable extendable_k optimization
if (bgmmc.K < bgmmc.wei_k_blk
|| bgmmc.K % data_type_vnni_granularity(bgmmc.wei_dt) != 0) {
return false;
}
bool a_dt_ok
= one_of(bgmmc.orig_src_dt, dnnl_s8, dnnl_u8, dnnl_bf16, dnnl_f16);
bool b_dt_ok
= one_of(bgmmc.orig_wei_dt, dnnl_s8, dnnl_u8, dnnl_bf16, dnnl_f16);
bool a_tag_ok = bgmmc.src_tag == dnnl_format_tag_any
|| bm_conf_utils.check_is_plain(bgmmc.src_tag);
bool b_tag_ok = bm_conf_utils.is_any_B_layout()
|| bm_conf_utils.check_b_layout_blocked_32_by_n(bgmmc.wei_tag);
bool has_zp = bgmmc.src_zp_type != brgemm_broadcast_t::none
|| bgmmc.wei_zp_type != brgemm_broadcast_t::none
|| bgmmc.dst_zp_type != brgemm_broadcast_t::none;
return bgmmc.orig_src_dt == bgmmc.src_dt
&& bgmmc.orig_wei_dt == bgmmc.wei_dt && bgmmc.is_amx
&& !bgmmc.is_runtime_N && !bgmmc.is_runtime_M && a_dt_ok && a_tag_ok
&& (bgmmc.reduce_kind == matmul_reduce_kind::undef) && b_tag_ok
&& b_dt_ok && !has_zp && !bgmmc.packed_sparse_weights;
}
bool matmul_amx_blocking_params_macro_t::divs_are_acceptable() const {
bool unacceptable_m_div = m_per_thread < min_m_dim && nthr_m_ > 1;
bool unacceptable_k_div = k_per_thread < min_k_dim && nthr_k_ > 1;
bool unacceptable_n_div;
if (nthr_k_ == 1 && k_per_thread < k_threshold_write_bound_layer) {
// The layer is write-bound (small K) and no reduction (C becomes non-consecutive)
unacceptable_n_div
= n_per_thread < min_n_dim_write_bound_layer && nthr_n_ > 1;
} else {
unacceptable_n_div = n_per_thread < min_n_dim && nthr_n_ > 1;
}
bool unacceptable_b_div = nthr_b_ > (size_t)batch;
return !unacceptable_m_div && !unacceptable_k_div && !unacceptable_n_div
&& !unacceptable_b_div;
}
size_t determine_tmul_size(size_t num_elements, int full_tile_size) {
size_t tmul_tiles = div_up(num_elements, full_tile_size);
size_t tmul_size = div_up(num_elements, tmul_tiles);
return tmul_size;
}
bool matmul_amx_blocking_params_macro_t::find_best_blocking(
const brgemm_matmul_conf_t &bgmmc,
const brgemm_matmul_conf_utils_t &bm_conf_utils,
matmul_amx_blocking_params_macro_t &best_blocking) {
if (!matmul_amx_blocking_params_macro_t::is_supported(
bgmmc, bm_conf_utils)) {
return false;
}
best_blocking = matmul_amx_blocking_params_micro_t(bgmmc);
matmul_amx_blocking_params_macro_t current_blocking(bgmmc);
assert(bgmmc.tr_a_dt_sz == bgmmc.tr_b_dt_sz);
current_blocking.gemm_dt_sz = bgmmc.tr_a_dt_sz;
for (size_t nthr_to_check = bgmmc.nthr; nthr_to_check > 0;
nthr_to_check--) {
current_blocking.nthr_ = nthr_to_check;
for (int b_div = 1; b_div <= current_blocking.nthr_; ++b_div) {
if (current_blocking.nthr_ % b_div != 0) continue;
for (int m_div = 1; m_div <= current_blocking.nthr_ / b_div;
++m_div) {
if ((current_blocking.nthr_ / b_div) % m_div != 0) continue;
for (int k_div = 1;
k_div <= (current_blocking.nthr_ / b_div) / m_div;
++k_div) {
if (((current_blocking.nthr_ / b_div) / m_div) % k_div != 0)
continue;
int n_div = ((current_blocking.nthr_ / b_div) / m_div)
/ k_div;
current_blocking.set_core_divs(b_div, m_div, k_div, n_div);
if (current_blocking.divs_are_acceptable()
&& current_blocking.set_blocking_parameters()) {
if (current_blocking > best_blocking) {
best_blocking = current_blocking;
}
}
}
}
}
}
return true;
}
float matmul_amx_blocking_params_macro_t::calculate_blocking_scores() const {
size_t a_size = m_per_thread * k_per_thread * gemm_dt_sz;
size_t b_size = n_per_thread * k_per_thread * gemm_dt_sz;
size_t d_size = m_per_thread * n_per_thread * c_dt_sz;
bw_map_t bw_interpulator;
int macs_per_cycle_base = 1024;
int max_k_tmul = 64;
int max_n_tmul = 16;
// Reducing k-tmul or n-tmul does not shorten the cycles.
// However, reducing mtmul reduces the number of cycles required to execute a single tmul instruction.
int num_cycles_per_tmul
= m_tmul * max_k_tmul * max_n_tmul / macs_per_cycle_base;
// Calculate reduction cycles
float strip_1_size_shared, strip_1_size_private, strip_1_share_coef;
float strip_mid_size_shared, strip_mid_size_private;
float num_tmuls_per_strip, strip_mid_share_coef, num_strip, nt_mat_l1_miss;
float l1_reuse;
if (is_horizontal) {
// Amount of C/D bytes that are written per core
size_t strip_dst_size = m_decomposition * n_per_thread
* (nthr_k_ == 1 ? c_dt_sz : acc_dt_sz);
// Amount of compute
num_tmuls_per_strip = m_decomposition * k_per_thread * n_per_thread
/ (m_tmul * k_tmul * n_tmul);
// Amount of strips in the execution
num_strip = div_up(m_per_thread, m_decomposition);
// B is blocked to the L2 in horizontal traversal, its loads are NT
nt_mat_l1_miss = b_size;
// Number of times A is reused from L1 in a strip
l1_reuse = div_up(n_blk_, n_decomposition);
// In horizontal multiple cores load the same B to L2
strip_1_size_shared = b_size;
// In strip 1 there is no sharing of A since there are no prefetches
size_t strip_1_size_private_a
= m_decomposition * k_per_thread * gemm_dt_sz;
strip_1_size_private = strip_1_size_private_a + strip_dst_size;
// The cores that share B
strip_1_share_coef = nthr_m_;
// In the mid strips B is reused from L2 and
// A is prefetched by multiple cores.
strip_mid_size_shared = m_decomposition * k_per_thread
* gemm_dt_sz; // A size per strip
// C is private to a core, since each core writes to a distinct buffer
strip_mid_size_private = strip_dst_size;
// share_coeff - the cores that share A
strip_mid_share_coef = std::max((size_t)1, nthr_n_);
} else {
// Amount of C/D bytes that are written per core
size_t strip_dst_size = n_decomposition * m_per_thread
* (nthr_k_ == 1 ? c_dt_sz : acc_dt_sz);
// Amount of compute
num_tmuls_per_strip = n_decomposition * k_per_thread * m_per_thread
/ (m_tmul * k_tmul * n_tmul);
// Amount of strips in the execution
num_strip = div_up(n_per_thread, n_decomposition);
// A is blocked to the L2 in vertical traversal, its loads are NT
nt_mat_l1_miss = a_size;
// Number of times B is reused from L1 in a strip
l1_reuse = div_up(m_blk_, m_decomposition);
// In vertical multiple cores load the same A to L2
strip_1_size_shared = a_size;
// In strip 1 there is no sharing of B since there are no prefetches
size_t strip_1_size_private_b
= n_decomposition * k_per_thread * gemm_dt_sz;
strip_1_size_private = strip_1_size_private_b + strip_dst_size;
// The cores that share A
strip_1_share_coef = nthr_n_;
// In the mid strips A is reused from L2 and
// B is prefetched by multiple cores.
strip_mid_size_shared = n_decomposition * k_per_thread
* gemm_dt_sz; // B size per strip
// C is private to a core, since each core writes to a distinct buffer
strip_mid_size_private = strip_dst_size;
// share_coeff - the cores that share B
strip_mid_share_coef = std::max((size_t)1, nthr_m_);
}
// There are 2 L1 misses for the L1 matrix:
// 1. For the prefetch to the L2 (==L1 miss)
// 2. For the read from L2
float temporal_matrix_l1_miss = strip_mid_size_shared * 2;
float temporal_matrix_l1_hit = strip_mid_size_shared * (l1_reuse - 1);
float c_elem_per_strip = m_blk_ * n_blk_;
// C post write miss in bytes = m_blk_ * (#n_decompositions in BRGEMM) * (#cache lines per n_decomposition) * 64
float c_post_write_miss = m_blk_ * div_up(n_blk_, n_decomposition)
* rnd_up(n_decomposition * c_dt_sz, 64);
// C post write total in bytes = m_blk_ * (#n_decompositions in BRGEMM) * (#writes per n_decomposition) * 64
float c_post_write_total = m_blk_ * div_up(n_blk_, n_decomposition)
* div_up(n_decomposition, 16) * 64;
float c_post_write_hit = c_post_write_total - c_post_write_miss;
float c_post_read_c_tmp = c_elem_per_strip * acc_dt_sz;
float c_tmp_l1_cycles;
if (k_blk_ == K) {
c_tmp_l1_cycles = acc_dt_sz * c_elem_per_strip * k_chunk_size_
/ bw_interpulator.l1_load_hit_bw;
} else {
// TODO: modify wrt wsp
c_tmp_l1_cycles = acc_dt_sz * c_elem_per_strip * k_chunk_size_
/ bw_interpulator.l1_store_miss_bw;
}
float c_l1_cycles = c_post_write_miss / bw_interpulator.l1_store_miss_bw
+ c_post_write_hit / bw_interpulator.l1_store_hit_bw
+ c_post_read_c_tmp / bw_interpulator.l1_store_hit_bw
+ c_tmp_l1_cycles;
float l1_cycles = temporal_matrix_l1_miss / bw_interpulator.l1_load_miss_bw
+ temporal_matrix_l1_hit / bw_interpulator.l1_load_hit_bw
+ nt_mat_l1_miss / bw_interpulator.l1_load_miss_bw + c_l1_cycles;
float strip_1_cycles
= strip_1_size_shared / bw_interpulator.get_bw(strip_1_share_coef)
+ strip_1_size_private / bw_interpulator.get_bw(1);
float strip_mid_dram = strip_mid_size_shared
/ bw_interpulator.get_bw(strip_mid_share_coef)
+ strip_mid_size_private / bw_interpulator.get_bw(1);
float strip_mid_llc = (strip_mid_size_private + strip_mid_size_shared)
/ bw_interpulator.llc_bw;
float strip_tmul = num_tmuls_per_strip * num_cycles_per_tmul;
float strip_mid_cycles
= std::max({strip_mid_dram, strip_mid_llc, l1_cycles, strip_tmul});
float gemm_cycles = strip_1_cycles + (num_strip - 1) * strip_mid_cycles;
// Calculate reduction cycles
float reduction_cycles;
size_t c_size_per_core = m_per_thread * n_per_thread * acc_dt_sz;
if (nthr_k_ != 1) {
if (c_size_per_core * 2 < L2_threshold() && batch == 1) {
float reduction_read_bytes = (M * N * acc_dt_sz) * ((nthr_k_ - 1))
/ (nthr_m_ * nthr_n_);
float reduction_read_cycles;
if (a_size + b_size + d_size < L2_threshold()) {
reduction_read_cycles
= reduction_read_bytes / bw_interpulator.get_bw(2);
} else {
reduction_read_cycles
= reduction_read_bytes / bw_interpulator.llc_bw;
}
float reduction_write_bytes
= (M * N * c_dt_sz) / (nthr_m_ * nthr_n_);
float reduction_write_cycles
= reduction_write_bytes / bw_interpulator.get_bw(1);
// Add reduction const overhead - measured
reduction_cycles
= reduction_read_cycles + reduction_write_cycles + 25000;
} else {
// Don't do reduction if c tmp doesn't fit
// Also parallel reduction is not supported for large batch
return 0;
}
} else {
reduction_cycles = 0;
}
float total_macs = M * K * N * batch;
float total_cycles = (gemm_cycles + reduction_cycles) * b_per_thread;
float peak_macs_per_cycle = (macs_per_cycle_base / gemm_dt_sz) * nthr;
float peak_cycles = total_macs / peak_macs_per_cycle;
return peak_cycles / total_cycles;
}
bool matmul_amx_blocking_params_macro_t::operator==(
const matmul_amx_blocking_params_macro_t &other) const {
bool same_score = other.efficiency_score_ == this->efficiency_score_;
bool same_direction = this->is_horizontal == other.is_horizontal;
bool same_l2_reuse = this->m_chunk_size_ * this->n_chunk_size_
== other.m_chunk_size_ * other.n_chunk_size_;
return same_score && same_direction && same_l2_reuse;
}
bool matmul_amx_blocking_params_macro_t::operator>(
const matmul_amx_blocking_params_macro_t &other) const {
if (other.efficiency_score_ > this->efficiency_score_) { return false; }
if (other.efficiency_score_ < this->efficiency_score_) { return true; }
// Both efficiency scores are equal
if (!this->is_horizontal && other.is_horizontal) {
if (this->m_per_thread * K + (size_t)(this->m_per_thread * N)
< L2_threshold()) {
// Vertical is an option. No l2 set issues for A
if (other.is_a_nt_) {
// Horizontal doesn't use the L1
return true;
}
}
return false;
} else if (this->is_horizontal && !other.is_horizontal) {
if (other.m_per_thread * K + (size_t)(other.m_per_thread * N)
< L2_threshold()) {
// Vertical is an option. No L2 set issues for A
if (this->is_a_nt_) {
// Horizontal doesn't use the L1
return false;
}
}
return true;
} else {
// Both are vertical or both are horizontal
// Pick by L2 reuse - the one with the largest m/n_chunk
// One of m_chunk_size_ and n_chunk_size is always 1
return this->m_chunk_size_ * this->n_chunk_size_
> other.m_chunk_size_ * other.n_chunk_size_;
}
}
bool matmul_amx_blocking_params_macro_t::operator!=(
const matmul_amx_blocking_params_macro_t &other) const {
return !(*this == other);
}
bool matmul_amx_blocking_params_macro_t::operator<(
const matmul_amx_blocking_params_macro_t &other) const {
return *this != other && !(*this > other);
}
dim_t matmul_amx_blocking_params_macro_t::calc_k_blk(size_t l1_dim) const {
// Assuming 2x2 decomposition
const size_t c_tiles = m_decomposition * n_decomposition * acc_dt_sz;
const size_t d_tiles = m_decomposition
* rnd_up(n_decomposition * c_dt_sz,
64); // Rounded up to cache line size
const size_t available_space_in_l1
= L1_threshold() - (c_tiles * 2 + d_tiles);
const dim_t largest_k = available_space_in_l1 / (l1_dim * gemm_dt_sz);
const dim_t largest_k_tiles = largest_k / this->k_tmul;
const dim_t k_tiles = div_up(K, this->k_tmul);
const dim_t k_per_thread_tiles = div_up(k_tiles, nthr_k_);
const dim_t num_K_blocks = div_up(k_per_thread_tiles, largest_k_tiles);
return nstl::min(
(dim_t)(div_up(k_per_thread_tiles, num_K_blocks) * this->k_tmul),
K);
}
std::set<dim_t> matmul_amx_blocking_params_macro_t::blk_candidates(
dim_t dim_per_thread, dim_t decomposition) const {
dim_t num_inner_blocks = div_up(dim_per_thread, decomposition);
std::set<dim_t> dim_set;
for (int num_groups = 1; num_groups <= num_inner_blocks; ++num_groups) {
dim_t group_size = div_up(num_inner_blocks, num_groups);
dim_set.insert(group_size);
}
return dim_set;
}
size_t matmul_amx_blocking_params_macro_t::l2_matrix_usage(size_t k_chunk_size,
size_t m_or_n_blk, size_t k_blk, bool is_horizontal) const {
int decomposition = is_horizontal ? m_decomposition : n_decomposition;
int l1_matrix_size = 2 * decomposition
* nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* gemm_dt_sz; // 2 for prefetch
int l2_matrix_size = m_or_n_blk
* nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* gemm_dt_sz;
int c_size = 2 * decomposition * m_or_n_blk
* acc_dt_sz; // Keep 2 C strips just to avoid evicting A
return l1_matrix_size + l2_matrix_size + c_size;
}
size_t matmul_amx_blocking_params_macro_t::l2_matrix_and_c_usage(
size_t k_chunk_size, size_t m_or_n_blk, size_t k_blk,
bool is_horizontal) const {
size_t per_thread_for_l1_matrix
= is_horizontal ? m_per_thread : n_per_thread;
int l1_matrix_size = 2 * per_thread_for_l1_matrix
* nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* gemm_dt_sz; // 2x factor to make sure C is fresher than A,B in LRU
int l2_matrix_size = 2 * m_or_n_blk
* nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* gemm_dt_sz; // 2x factor to make sure C is fresher than A,B in LRU
int c_size
= per_thread_for_l1_matrix * m_or_n_blk * acc_dt_sz; // Keep C in L2
return l1_matrix_size + l2_matrix_size + c_size;
}
int matmul_amx_blocking_params_macro_t::bw(size_t m_blk, size_t k_chunk_size,
size_t k_blk, size_t n_blk, bool is_horizontal) const {
int a_bw = m_blk * nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* gemm_dt_sz;
int b_bw = n_blk * nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* gemm_dt_sz;
int c_bw;
if ((l2_matrix_and_c_usage(k_chunk_size, is_horizontal ? n_blk : m_blk,
k_blk, is_horizontal)
< L2_threshold()
|| (dim_t)nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
== K)
&& nthr_k_ == 1) {
c_bw = 0;
} else {
c_bw = m_blk * n_blk * acc_dt_sz;
}
return a_bw + b_bw + c_bw;
}
int matmul_amx_blocking_params_macro_t::compute(
size_t m_blk, size_t k_chunk_size, size_t k_blk, size_t n_blk) const {
return m_blk * nstl::min(k_blk * k_chunk_size, (size_t)k_per_thread)
* n_blk;
}
float matmul_amx_blocking_params_macro_t::ratio(size_t m_blk,
size_t k_chunk_size, size_t k_blk, size_t n_blk,
bool is_horizontal) const {
return static_cast<float>(compute(m_blk, k_chunk_size, k_blk, n_blk))
/ bw(m_blk, k_chunk_size, k_blk, n_blk, is_horizontal);
}
float matmul_amx_blocking_params_macro_t::evaluate_single_core_blocking(
size_t k_chunk_size, size_t m_or_n_blk, size_t k_blk,
bool is_horizontal) const {
if (l2_matrix_usage(k_chunk_size, m_or_n_blk, k_blk, is_horizontal)
<= L2_threshold()) {
size_t m_blk, n_blk;
if (is_horizontal) {
m_blk = m_decomposition;
n_blk = m_or_n_blk;
} else {
m_blk = m_or_n_blk;
n_blk = n_decomposition;
}
float ratio_score
= ratio(m_blk, k_chunk_size, k_blk, n_blk, is_horizontal);
return ratio_score;
}
return 0;
}
void matmul_amx_blocking_params_macro_t::set_tmul_sizes() {
this->m_tmul = determine_tmul_size(this->m_per_thread, 16);
this->n_tmul = 16; // B blocked layout is a multiply of 16
this->k_tmul = nstl::min((size_t)wei_k_blk, (size_t)K);
}
void matmul_amx_blocking_params_macro_t::set_decomposition() {
m_decomposition = nstl::min((size_t)m_per_thread, 2 * m_tmul);
n_decomposition = nstl::min((size_t)n_per_thread, 2 * n_tmul);
}
bool matmul_amx_blocking_params_macro_t::is_horizontal_selected(
bool horizontal_not_possible, bool vertical_not_possible,
size_t best_m_v, size_t best_k_v, size_t k_blk_v) const {
// Choose between horizontal and vertical
bool is_horizontal_local;
if (horizontal_not_possible) {
is_horizontal_local = false;
} else if (vertical_not_possible) {
is_horizontal_local = true;
} else if ((size_t)m_per_thread < m_tmul * 2) {
// There are not enough tiles in M direction to go vertical
is_horizontal_local = true;
} else if ((size_t)n_per_thread < n_tmul * 2) {
// There are not enough tiles in N direction to go horizontal
is_horizontal_local = false;
} else if (m_per_thread >= n_per_thread) {
// Choose horizontal
is_horizontal_local = true;
} else {
// Choose vertical
is_horizontal_local = false;
}
return is_horizontal_local;
}
bool matmul_amx_blocking_params_macro_t::set_blocking_parameters() {
set_tmul_sizes();
set_decomposition();
std::set<dim_t> m_candidates
= blk_candidates(m_per_thread, m_decomposition);
std::set<dim_t> n_candidates
= blk_candidates(n_per_thread, n_decomposition);
dim_t best_k_h, best_n_h;
dim_t best_m_v, best_k_v;
float best_score_h = 0, best_score_v = 0;
bool horizontal_not_possible = false;
bool vertical_not_possible = false;
auto calc_horizontal = [&](size_t k_blk_h, dim_t min_k_chunk_size = 0) {
if (rnd_up(m_per_thread, m_decomposition) * (nthr_m_ - 1) > (size_t)M) {
horizontal_not_possible = true;
} else if (rnd_up(k_per_thread, k_blk_h) * (nthr_k_ - 1) > (size_t)K) {
// Early exit: There is no possible division of work for nthr_k threads
horizontal_not_possible = true;
} else {
std::set<dim_t> k_candidates_h
= blk_candidates(k_per_thread, k_blk_h);
best_n_h = 0;
for (std::set<dim_t>::reverse_iterator it_n = n_candidates.rbegin();
it_n != n_candidates.rend(); it_n++) {
for (std::set<dim_t>::reverse_iterator it_k
= k_candidates_h.rbegin();
it_k != k_candidates_h.rend(); it_k++) {
float cur_score = evaluate_single_core_blocking(
*it_k, *it_n * n_decomposition, k_blk_h, true);
if (cur_score > best_score_h && *it_k >= min_k_chunk_size) {
best_score_h = cur_score;
best_k_h = *it_k;
best_n_h = *it_n;
}
}
}
if (rnd_up(n_per_thread, best_n_h * n_decomposition) * (nthr_n_ - 1)
> (size_t)N) {
horizontal_not_possible = true;
}
if (rnd_up(k_per_thread, best_k_h * k_blk_h) * (nthr_k_ - 1)
> (size_t)K) {
// There is not enough work for nthr_k threads
horizontal_not_possible = true;
}
}
};
// Calculate best score for horizontal traversal
dim_t k_blk_h = calc_k_blk(m_decomposition);
calc_horizontal(k_blk_h);
auto calc_vertical = [&](size_t k_blk_v) {
if (rnd_up(n_per_thread, n_decomposition) * (nthr_n_ - 1) > (size_t)N) {
vertical_not_possible = true;
} else if (rnd_up(k_per_thread, k_blk_v) * (nthr_k_ - 1) > (size_t)K) {
// Early exit: There is no possible division of work for nthr_k threads
vertical_not_possible = true;
} else {
// Calculate best score for vertical traversal
std::set<dim_t> k_candidates_v
= blk_candidates(k_per_thread, k_blk_v);
for (std::set<dim_t>::reverse_iterator it_m = m_candidates.rbegin();
it_m != m_candidates.rend(); it_m++) {
for (std::set<dim_t>::reverse_iterator it_k
= k_candidates_v.rbegin();
it_k != k_candidates_v.rend(); it_k++) {
float cur_score = evaluate_single_core_blocking(
*it_k, *it_m * m_decomposition, k_blk_v, false);
if (cur_score > best_score_v) {
best_score_v = cur_score;
best_k_v = *it_k;
best_m_v = *it_m;
}
}
}
if (rnd_up(m_per_thread, best_m_v * m_decomposition) * (nthr_m_ - 1)
> (size_t)M) {
vertical_not_possible = true;
}
if (rnd_up(k_per_thread, best_k_v * k_blk_v) * (nthr_k_ - 1)
> (size_t)K) {
// There is not enough work for nthr_k threads
vertical_not_possible = true;
}
size_t l2_util_v;
if (!vertical_not_possible) {
// Figure out if vertical is an option wrt L2 usage
l2_util_v = l2_matrix_and_c_usage(
best_k_v, best_m_v, k_blk_v, false);
if (l2_util_v > L2_threshold()) {
l2_util_v = l2_matrix_usage(
best_k_v, best_m_v, k_blk_v, false);
}
}
bool repeat_loop_over_k = div_up(K, k_blk_v * best_k_v) != 1;
bool critical_l2_set_issues_a
= div_up((size_t)K, k_blk_v * best_k_v) != nthr_k_
|| (size_t)((l2_util_v * nthr_k_)) >= L2_threshold();
if (repeat_loop_over_k && critical_l2_set_issues_a)
vertical_not_possible = true;
}
};
dim_t k_blk_v = calc_k_blk(n_decomposition);
calc_vertical(k_blk_v);
if (vertical_not_possible && horizontal_not_possible) { return false; }
is_horizontal = is_horizontal_selected(horizontal_not_possible,
vertical_not_possible, best_m_v, best_k_v, k_blk_v);
if (is_horizontal) {
size_t l1_eff_factor = div_up(K, k_blk_h);
// This works for M > 32 in this case k_blk_h << 4096 =~ 512
// For M <= the problem is heavily memory bound ==> don't care about the L1 and work completely from the L2
size_t a_l1 = k_blk_h * m_decomposition * gemm_dt_sz;
size_t c_l1 = n_decomposition * m_decomposition * acc_dt_sz;
size_t d_post = m_decomposition * rnd_up(n_decomposition * c_dt_sz, 64);
is_a_nt_ = false;
is_b_nt_ = true;
if (k_blk_h < K
&& l1_eff_factor * a_l1 + 2 * c_l1 + d_post > L1_threshold()) {
best_score_h = 0;
// Calculate k_blk_h and n_blk_h that can fit in the L2 when k_blk is wei_k_blk
calc_horizontal(wei_k_blk, k_blk_h / wei_k_blk);
// Give up on the L1.
k_blk_h = nstl::min(wei_k_blk * best_k_h, K);
best_k_h = 1;
is_a_nt_ = true;
// TODO: revive after precopy implementation
// need_buf_a_ = false;
need_prefetch = false;
} else {
// TODO: revive after precopy implementation
// need_buf_a_ = false;
need_prefetch = true;
}
k_blk_ = k_blk_h;
k_chunk_size_ = best_k_h;
n_blk_ = nstl::min(best_n_h * n_decomposition, N);
n_chunk_size_ = 1;
m_blk_ = m_decomposition;
m_chunk_size_ = div_up(m_per_thread, m_blk_);
} else {
k_blk_ = k_blk_v;
k_chunk_size_ = best_k_v;
n_blk_ = n_decomposition;
n_chunk_size_ = div_up(n_per_thread, n_blk_);
m_blk_ = nstl::min(best_m_v * m_decomposition, M);
m_chunk_size_ = 1;
is_a_nt_ = true;
is_b_nt_ = false;
need_prefetch = true;
}
extendable_k_ = K % data_type_vnni_granularity(wei_dt) != 0;
brgemm_batch_size_ = 1;
n_chunk_elems_ = nstl::min(n_per_thread, n_blk_ * n_chunk_size_);
m_chunk_elems_ = nstl::min(m_per_thread, m_blk_ * m_chunk_size_);
k_chunk_elems_ = nstl::min(k_per_thread, k_blk_ * k_chunk_size_);
set_nt_ = true;
current_lda_ = get_actual_lda();
// Need a temp C buffer if a BRGEMM creates partial results
need_buf_c_ = (nthr_k_ != 1) || (k_blk_ != K);
efficiency_score_ = calculate_blocking_scores();
return true;
}
void matmul_amx_blocking_params_macro_t::set_core_divs(
int nthr_b, int nthr_m, int nthr_k, int nthr_n) {
nthr_b_ = nthr_b;
nthr_m_ = nthr_m;
nthr_k_ = nthr_k;
nthr_n_ = nthr_n;
m_per_thread = div_up(M, nthr_m_);
k_per_thread = div_up(K, nthr_k_);
n_per_thread = div_up(N, nthr_n_);
b_per_thread = div_up(this->batch, nthr_b_);
nthr_mnb_ = nthr_ / nthr_k_;
}
void matmul_amx_blocking_params_micro_t::find_best_blocking(
const brgemm_matmul_conf_t &bgmmc,
const brgemm_matmul_conf_utils_t &bm_conf_utils,
matmul_amx_blocking_params_t &best_blocking) {
matmul_amx_blocking_params_micro_t current_blocking(bgmmc);
const int min_k_per_thread = 1024;
const int max_k_parallel_work
= div_up(static_cast<int>(bgmmc.K), min_k_per_thread);
const bool is_amx_xf16 = bgmmc.is_amx
&& (bm_conf_utils.is_bf16() || bm_conf_utils.is_f16()
|| bm_conf_utils.is_f32_f16() || bm_conf_utils.is_f32_bf16()
|| bm_conf_utils.is_bf32()
|| bm_conf_utils.is_bf16_with_int_wei()
|| bm_conf_utils.is_f16_with_int_wei());
const bool is_amx_int8 = bgmmc.is_amx && bm_conf_utils.is_int8();
const bool runtime_dims
= bgmmc.is_runtime_M || bgmmc.is_runtime_N || bgmmc.is_runtime_K;
const int max_nthr_k = !runtime_dims && is_amx_xf16 && bgmmc.batch == 1
? nstl::min(saturate(1, 7, bgmmc.nthr / 8), max_k_parallel_work)
: 1;
int iter = 0;
const int runtime_M_chunk = bgmmc.lda_big_pow2() ? 2 : 4;
const int runtime_N_chunk = 2;
// Disable skip configuration due to regressions for some cases.
const bool disable_skip_config = bgmmc.M == 4
&& utils::one_of(true, bgmmc.N == 4096 && bgmmc.K == 4096,
bgmmc.N == 11008 && bgmmc.K == 4096,
bgmmc.N == 4096 && bgmmc.K == 11008);
for (int nthr_k = 1; nthr_k <= max_nthr_k; nthr_k++) {
int nthr_bmn = bgmmc.nthr / nthr_k;
int num_M_blk = bgmmc.is_runtime_M ? 1 : div_up(bgmmc.M, bgmmc.M_blk);
int num_N_blk = bgmmc.is_runtime_N ? 1 : div_up(bgmmc.N, bgmmc.N_blk);
int k_parallel_work = nstl::min(max_k_parallel_work, nthr_k);
int num_parallel_work
= bgmmc.batch * num_M_blk * num_N_blk * k_parallel_work;
const bool a_lot_of_parallel_work_lvl2
= num_parallel_work > 16 * bgmmc.nthr;
const bool low_parallelism
= static_cast<float>(num_parallel_work) < 1.5f * bgmmc.nthr;
const bool maybe_low_blocking
= is_amx_int8 && bm_conf_utils.maybe_low_brg_blocking();
const int min_M_blk = !bgmmc.is_runtime_M
&& (maybe_low_blocking || low_parallelism)
&& bgmmc.M_blk > 32
? div_up(bgmmc.M_blk, 2)
: bgmmc.M_blk;
const int min_N_blk = !bgmmc.is_runtime_N && low_parallelism
&& is_amx_xf16 && !bm_conf_utils.check_n_blk_fixed()
&& bgmmc.N_blk > 32 && !runtime_dims
? 32
: bgmmc.N_blk;
const int desired_M_chunk = bgmmc.is_runtime_M
? runtime_M_chunk
: nstl::min(4, num_M_blk);
const int desired_N_chunk = bgmmc.is_runtime_N
? runtime_N_chunk
: nstl::min(a_lot_of_parallel_work_lvl2 ? 6 : 4, num_N_blk);
std::unordered_set<int> mblk_candidates;
for (int m_blk = bgmmc.M_blk; m_blk >= min_M_blk;
m_blk = m_blk > 1 ? div_up(m_blk, 2) : m_blk - 1) {
if (IMPLICATION(maybe_low_blocking, m_blk != bgmmc.M_blk))
mblk_candidates.insert(m_blk);
}
if (!bgmmc.is_runtime_M && bgmmc.M > 16) {
// Add multiple of 16 M block sizes for consideration
const int mul16_m_blk_max
= nstl::min(rnd_dn(static_cast<int>(bgmmc.M), 16), 64);
const int mul16_m_blk_min = rnd_up(min_M_blk, 16);
for (int m_blk = mul16_m_blk_max; m_blk >= mul16_m_blk_min;
m_blk -= 16) {
mblk_candidates.insert(m_blk);
}
}
bool found_best_blocking = false;
for_(int n_blk = bgmmc.N_blk; n_blk >= min_N_blk; n_blk -= 16)
for_(int m_blk : mblk_candidates)
for_(int n_ch_sz = desired_N_chunk; n_ch_sz >= 1; n_ch_sz--)
for (int m_ch_sz = desired_M_chunk; m_ch_sz >= 1; m_ch_sz--, iter++) {
current_blocking.set_blocking_parameters(
nthr_k, n_blk, n_ch_sz, m_blk, m_ch_sz);
float cur_score = current_blocking.get_blocking_scores();
float bst_score = best_blocking.get_blocking_scores();
int m_chunks = div_up(bgmmc.M, m_blk * m_ch_sz);
int n_chunks = div_up(bgmmc.N, n_blk * n_ch_sz);
int work_amount = bgmmc.batch * m_chunks * n_chunks;
bool skip_config = work_amount < nthr_bmn * 3
&& work_amount % nthr_bmn != 0 && max_nthr_k == 1;
if (skip_config && !disable_skip_config) continue;
if (cur_score > bst_score) {
best_blocking = current_blocking;
found_best_blocking = true;
}
}
if (!found_best_blocking) {
current_blocking.set_blocking_parameters(
nthr_k, min_N_blk, 1, min_M_blk, 1);
float cur_score = current_blocking.get_blocking_scores();
float bst_score = best_blocking.get_blocking_scores();
if (cur_score > bst_score) best_blocking = current_blocking;
}
}
}
void matmul_amx_blocking_params_micro_t::update_k_blocking_dependent_params() {
k_chunk_elems_ = k_blk_ * k_chunk_size_ * brgemm_batch_size_;
current_lda_ = get_actual_lda();
need_buf_c_ = is_buffer_c_required();
}
void matmul_amx_blocking_params_micro_t::set_blocking_parameters(
int nthr_k, int n_blk, int n_chunk_size, int m_blk, int m_chunk_size) {
nthr_k_ = nstl::max(1, nthr_k);
nthr_mnb_ = nthr / nthr_k_;
nthr_ = nthr_mnb_ * nthr_k_;
n_blk_ = n_blk;
n_chunk_size_ = n_chunk_size;
m_blk_ = m_blk;
m_chunk_size_ = m_chunk_size;
if (one_of(0, n_blk_, n_chunk_size_, m_blk_, m_chunk_size_)) {
k_blk_ = k_chunk_size_ = k_chunk_elems_ = brgemm_batch_size_ = 0;
efficiency_score_ = 0.0f;
return;
}
n_chunk_elems_ = n_blk_ * n_chunk_size_;
m_chunk_elems_ = m_blk_ * m_chunk_size_;
if (K < wei_k_blk) {
k_blk_ = is_amx ? rnd_up(K, required_k_granularity) : K;
brgemm_batch_size_ = 1;
} else {
dim_t k_per_thr = div_up(K, nthr_k_);
k_blk_ = nstl::min(rnd_up(k_per_thr, required_k_granularity),
static_cast<dim_t>(wei_k_blk));
const dim_t num_k_blk = div_up(K, k_blk_);
const dim_t num_k_blk_per_thread = div_up(num_k_blk, nthr_k_);
brgemm_batch_size_ = num_k_blk_per_thread;
auto chunk_sz = calculate_chunk_memory_size();
const dim_t div_min = chunk_sz / L2_threshold();
const dim_t div_max = div_up(chunk_sz, L2_threshold());
// For big pow2 lda prefer to increase area of linear memory access
const dim_t adjust_k_divisor_threshold = lda_big_pow2() ? 2 : 0;
// Adjust K blocking values to fit into L2 cache
if (div_min > adjust_k_divisor_threshold && brgemm_batch_size_ > 1) {
const auto kc1 = nstl::max(
brgemm_batch_size_ / div_min, static_cast<dim_t>(1));
const auto kc2 = div_up(brgemm_batch_size_, div_max);
const auto tail1 = num_k_blk_per_thread % kc1;
const auto tail2 = num_k_blk_per_thread % kc2;
// Prefer adjusted chunk size with more equal work distribution
// Across iterations
brgemm_batch_size_
= IMPLICATION(tail1 == 0 || tail2 < tail1, tail2 == 0)
? kc2
: kc1;
}
k_chunk_elems_ = k_blk_ * brgemm_batch_size_ * k_chunk_size_;
dim_t brgemm_k_elems = k_blk_ * brgemm_batch_size_;
const dim_t current_k_tail = K % k_blk_;
// TODO: review extendable_k_ condition to cover more cases
extendable_k_ = (K % wei_k_blk != 0) && (brgemm_k_elems > wei_k_blk)
&& wei_zp_type == none && !use_buffer_a
&& !packed_sparse_weights;
if (extendable_k_) {
if (brgemm_k_elems >= K) {
k_blk_ = K;
k_chunk_size_ = 1;
brgemm_batch_size_ = 1;
} else {
k_blk_ = brgemm_k_elems;
k_chunk_size_ = 1;
brgemm_batch_size_ = 1;
}
} else if (current_k_tail == 0
&& K % (k_blk_ * brgemm_batch_size_) == 0) {
k_blk_ = brgemm_k_elems;
brgemm_batch_size_ = 1;
} else if (nthr_k_ == 1
&& K == k_blk_ * brgemm_batch_size_ + current_k_tail) {
k_blk_ = brgemm_k_elems;
brgemm_batch_size_ = 2;
}
}
need_buf_a_
= use_buffer_a || (!extendable_k_ && K % required_k_granularity);
blocking_chunk_mem_size_ = calculate_chunk_memory_size();
efficiency_score_ = calculate_blocking_scores();
}
// Returns score for current blocking parameters' values in range [0, 1]
// for parallel work over threads distribution score. Maximum scores - when
// all threads have the same work amount w/o tails
float matmul_amx_blocking_params_micro_t::get_thread_balance_scores() const {
assert(!(is_runtime_M && is_runtime_N)
&& "single runtime dim is supported");
// Ignore M sizes in thread balance computation as actual M size is unknown
if (is_runtime_M) return (float)N / rnd_up(N, n_chunk_elems_);
// Ignore N sizes in thread balance computation as actual N size is unknown
if (is_runtime_N) return (float)M / rnd_up(M, m_chunk_elems_);
const dim_t num_M_chunks = div_up(M, m_chunk_elems_);
const dim_t num_N_chunks = div_up(N, n_chunk_elems_);
float mnb_parallel_score = batch * ((float)M / m_chunk_elems_)
* ((float)N / n_chunk_elems_)
/ rnd_up(batch * num_M_chunks * num_N_chunks, nthr_mnb_)
* nthr_mnb_;
float k_parallel_score = 1.0f;
if (nthr_k_ > 1) {