-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathsdpa.cpp
490 lines (416 loc) · 17.9 KB
/
sdpa.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*******************************************************************************
* Copyright 2024-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cassert>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "oneapi/dnnl/dnnl.hpp"
#include "oneapi/dnnl/dnnl_graph.hpp"
#include "graph_example_utils.hpp"
using namespace dnnl;
using namespace dnnl::graph;
using layout_type = logical_tensor::layout_type;
using dim = logical_tensor::dim;
using dims = logical_tensor::dims;
struct sdpa_dims_t {
dim mb;
dim seq_len;
dim head_num;
dim head_size;
dim query_num;
};
static const int min_runs = 4;
// this is changed from the fill_random() function in matmul_perf.cpp.
void fill_random(std::vector<float> &out) {
static std::vector<float> random_data_f;
constexpr size_t nrand = 1037;
if (random_data_f.empty()) {
std::mt19937 generator;
std::uniform_real_distribution<float> dist_f(-1.0f, 1.0f);
random_data_f.resize(nrand);
for (auto &d : random_data_f)
d = dist_f(generator);
}
for (size_t i = 0; i < out.size(); i += nrand) {
size_t chunk = std::min(nrand, out.size() - i);
std::memcpy(&out[i], random_data_f.data(), chunk * sizeof(float));
}
}
// initialize the mask with first 3/4 elements with 0s and the last 1/4 elements
// with -inf.
void fill_mask(std::vector<float> &mask, size_t seq_len) {
const size_t pos = seq_len * 3 / 4;
for (size_t i = 0; i < mask.size(); ++i) {
if (i % seq_len < pos)
mask[i] = 0.f;
else
mask[i] = -1 * std::numeric_limits<float>::infinity();
}
}
void print_test_case(memory::data_type dt, const sdpa_dims_t &p) {
std::cout << '[' << std::setw(4) << dnnl_dt2str(memory::convert_to_c(dt));
std::cout << " mb = " << p.mb << ", seq_len = " << p.seq_len
<< ", head_num = " << p.head_num
<< ", head_size = " << p.head_size
<< ", query_num = " << p.query_num;
std::cout << "] " << std::flush;
}
void bench_sdpa_primitives(engine::kind ekind, memory::data_type dt,
const sdpa_dims_t &p, double time_limit = 0.) {
const bool quick_test = (time_limit == 0.);
print_test_case(dt, p);
// Create execution dnnl::engine.
dnnl::engine eng(ekind, 0);
// Create dnnl::stream.
dnnl::stream strm(eng);
// Intermediate data type
const memory::data_type dt_inter = memory::data_type::f32;
// Prepare input and output shapes to construct the sdpa graph.
const memory::dims q_sz = {p.mb, p.head_num, p.query_num, p.head_size};
const memory::dims k_sz = {p.mb, p.head_num, p.head_size, p.seq_len};
const memory::dims v_sz = {p.mb, p.head_num, p.seq_len, p.head_size};
const memory::dims score_sz = {p.mb, p.head_num, p.query_num, p.seq_len};
const memory::dims scale_sz = {1, 1, 1, 1};
const memory::dims mask_sz = {p.mb, 1, p.query_num, p.seq_len};
// score = query x key.T
// scaled_score = score / scale
// masked_score = scaled_score + mask
// All combined in a single matmul primitive.
auto query_md = memory::desc(q_sz, dt, memory::format_tag::abcd);
auto key_md = memory::desc(k_sz, dt, memory::format_tag::abdc);
auto score_md = memory::desc(score_sz, dt_inter, memory::format_tag::abcd);
auto scale_md = memory::desc(scale_sz, dt, memory::format_tag::abcd);
auto mask_md = memory::desc(mask_sz, dt, memory::format_tag::abcd);
auto probs_md = memory::desc(score_sz, dt, memory::format_tag::abcd);
primitive_attr bmm1_attr;
bmm1_attr.set_scratchpad_mode(scratchpad_mode::user);
post_ops bmm1_po;
bmm1_po.append_binary(algorithm::binary_div, scale_md);
bmm1_po.append_binary(algorithm::binary_add, mask_md);
bmm1_attr.set_post_ops(bmm1_po);
auto bmm1_pd = matmul::primitive_desc(
eng, query_md, key_md, score_md, bmm1_attr);
auto bmm1_prim = matmul(bmm1_pd);
// attention_probs = softmax(masked_score)
primitive_attr softmax_attr;
softmax_attr.set_scratchpad_mode(scratchpad_mode::user);
auto softmax_pd = softmax_forward::primitive_desc(eng,
prop_kind::forward_inference, algorithm::softmax_accurate, score_md,
probs_md, /* axis = */ score_md.get_ndims() - 1, softmax_attr);
auto softmax_prim = softmax_forward(softmax_pd);
// attention_output = attention_probs x value
auto value_md = memory::desc(v_sz, dt, memory::format_tag::abcd);
auto output_md = memory::desc(q_sz, dt, memory::format_tag::abcd);
primitive_attr bmm2_attr;
bmm2_attr.set_scratchpad_mode(scratchpad_mode::user);
auto bmm2_pd = matmul::primitive_desc(
eng, probs_md, value_md, output_md, bmm2_attr);
auto bmm2_prim = matmul(bmm2_pd);
// Create memory objects
auto m_query = memory(query_md, eng);
auto m_key = memory(key_md, eng);
auto m_scale = memory(scale_md, eng);
auto m_mask = memory(mask_md, eng);
auto m_value = memory(value_md, eng);
auto m_output = memory(output_md, eng);
// Allocate user data.
std::vector<float> query_data(product(q_sz));
std::vector<float> key_data(product(k_sz));
std::vector<float> scale_data(product(scale_sz), std::sqrt(p.head_size));
std::vector<float> mask_data(product(mask_sz));
std::vector<float> value_data(product(v_sz));
std::vector<float> output_data(product(q_sz));
fill_random(query_data);
fill_random(key_data);
fill_random(value_data);
fill_mask(mask_data, static_cast<size_t>(p.seq_len));
// Write data to tensor object's handle.
write_to_dnnl_memory(query_data.data(), m_query);
write_to_dnnl_memory(key_data.data(), m_key);
write_to_dnnl_memory(scale_data.data(), m_scale);
write_to_dnnl_memory(mask_data.data(), m_mask);
write_to_dnnl_memory(value_data.data(), m_value);
size_t max_scratchpad_size = 0;
auto bmm1_scratchpad = bmm1_pd.scratchpad_desc().get_size();
auto softmax_scratchpad = softmax_pd.scratchpad_desc().get_size();
auto bmm2_scratchpad = bmm2_pd.scratchpad_desc().get_size();
for (auto &sz : {bmm1_scratchpad, softmax_scratchpad, bmm2_scratchpad}) {
if (max_scratchpad_size < sz) max_scratchpad_size = sz;
}
auto scratchpad_md
= memory::desc({static_cast<memory::dim>(max_scratchpad_size)},
memory::data_type::u8, memory::format_tag::a);
// allocate intermediate memory
auto m_score = memory(score_md, eng);
auto m_probs = memory(probs_md, eng);
auto m_scratchpad = memory(scratchpad_md, eng);
const auto loop = [&]() {
// each primitive will use all threads
bmm1_prim.execute(strm,
{{DNNL_ARG_SRC, m_query}, {DNNL_ARG_WEIGHTS, m_key},
{DNNL_ARG_DST, m_score},
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
m_scale},
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(1) | DNNL_ARG_SRC_1,
m_mask},
{DNNL_ARG_SCRATCHPAD, m_scratchpad}});
softmax_prim.execute(strm,
{{DNNL_ARG_SRC, m_score}, {DNNL_ARG_DST, m_probs},
{DNNL_ARG_SCRATCHPAD, m_scratchpad}});
bmm2_prim.execute(strm,
{{DNNL_ARG_SRC, m_probs}, {DNNL_ARG_WEIGHTS, m_value},
{DNNL_ARG_DST, m_output},
{DNNL_ARG_SCRATCHPAD, m_scratchpad}});
};
// Warmup run.
// Execute primitives of sdpa.
loop();
// Wait for the computation to finish.
strm.wait();
// First run.
auto start_first = std::chrono::steady_clock::now();
loop();
strm.wait();
auto end_first = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> dur_first
= end_first - start_first;
if (quick_test) return;
// Timing runs.
const int runs = std::max(min_runs, int(time_limit / dur_first.count()));
auto start = std::chrono::steady_clock::now();
for (int i = 0; i <= runs; i++)
loop();
strm.wait();
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> duration = end - start;
// Display the results.
double avg_time = (duration.count() - dur_first.count()) / runs;
std::cout << "primitive runs: " << runs + 1 << "; ";
std::cout << "avg_time: " << avg_time << " ms" << std::endl;
}
const char *get_type_string(logical_tensor::data_type dt) {
const char *type_string = "unknown";
#define TYPE_CASE(T) \
if (dt == logical_tensor::data_type::T) type_string = #T;
TYPE_CASE(f16);
TYPE_CASE(f32);
TYPE_CASE(bf16);
#undef TYPE_CASE
return type_string;
}
void print_test_case(logical_tensor::data_type dt, const sdpa_dims_t &p) {
std::cout << '[' << std::setw(4) << get_type_string(dt);
std::cout << " mb = " << p.mb << ", seq_len = " << p.seq_len
<< ", head_num = " << p.head_num
<< ", head_size = " << p.head_size
<< ", query_num = " << p.query_num;
std::cout << "] " << std::flush;
}
void bench_sdpa(engine::kind ekind, logical_tensor::data_type dt,
const sdpa_dims_t &p, double time_limit = 0.) {
const bool quick_test = (time_limit == 0.);
print_test_case(dt, p);
allocator alloc = create_allocator(ekind);
// Create execution dnnl::engine.
dnnl::engine eng = make_engine_with_allocator(ekind, 0, alloc);
// Create dnnl::stream.
dnnl::stream strm(eng);
// Prepare input and output shapes to construct the sdpa graph.
const dims qv_sz = {p.mb, p.head_num, p.query_num, p.head_size};
const dims k_sz = {p.mb, p.head_num, p.seq_len, p.head_size};
const dims score_sz = {p.mb, p.head_num, p.query_num, p.seq_len};
const dims scale_sz = {1};
const dims mask_sz = {p.mb, 1, p.query_num, p.seq_len};
// Incremental IDs used to create logical tensors and operations.
size_t id = 0;
// Intermediate data type
const logical_tensor::data_type dt_inter = logical_tensor::data_type::f32;
// score = query x key.T
auto query = logical_tensor(id++, dt, qv_sz, layout_type::strided);
auto key = logical_tensor(id++, dt, k_sz, layout_type::strided);
auto score = logical_tensor(id++, dt_inter, score_sz, layout_type::strided);
auto bmm1 = op(id++, op::kind::MatMul, "bmm1");
bmm1.set_attr<bool>(op::attr::transpose_b, true);
bmm1.add_inputs({query, key});
bmm1.add_outputs({score});
// scaled_score = score / scale
auto scale = logical_tensor(id++, dt, scale_sz, layout_type::strided);
auto scaled_score
= logical_tensor(id++, dt_inter, score_sz, layout_type::strided);
auto scale_div = op(id++, op::kind::Divide, "scale_div");
scale_div.add_inputs({score, scale});
scale_div.add_outputs({scaled_score});
// masked_score = scaled_score + mask
auto mask = logical_tensor(id++, dt, mask_sz, layout_type::strided);
auto masked_score
= logical_tensor(id++, dt_inter, score_sz, layout_type::strided);
auto mask_add = op(id++, op::kind::Add, "mask_add");
mask_add.add_inputs({scaled_score, mask});
mask_add.add_outputs({masked_score});
// attention_probs = softmax(masked_score)
auto probs = logical_tensor(id++, dt, score_sz, layout_type::strided);
auto softmax = op(id++, op::kind::SoftMax, "softmax");
softmax.set_attr<int64_t>(op::attr::axis, -1);
softmax.add_inputs({masked_score});
softmax.add_outputs({probs});
// attention_output = attention_probs x value
auto value = logical_tensor(id++, dt, k_sz, layout_type::strided);
auto output = logical_tensor(id++, dt, qv_sz, layout_type::strided);
auto bmm2 = op(id++, op::kind::MatMul, "bmm2");
bmm2.add_inputs({probs, value});
bmm2.add_outputs({output});
// Construct a sdpa graph with engine kind and operations.
dnnl::graph::graph sdpa(ekind);
sdpa.add_op(bmm1);
sdpa.add_op(scale_div);
sdpa.add_op(mask_add);
sdpa.add_op(softmax);
sdpa.add_op(bmm2);
sdpa.finalize();
// Get partitions from the sdpa graph.
std::vector<partition> partitions = sdpa.get_partitions();
// This is just for oneDNN testing purpose.
if (partitions.size() != 1) {
std::cout << "unsupported sdpa" << std::endl;
return;
}
// Compile the partition with inputs, outputs, and an engine.
compiled_partition cp = partitions[0].compile(
{query, key, scale, mask, value}, {output}, eng);
// Create tensor objects
auto ts_query = tensor(query, eng);
auto ts_key = tensor(key, eng);
auto ts_scale = tensor(scale, eng);
auto ts_mask = tensor(mask, eng);
auto ts_value = tensor(value, eng);
auto ts_output = tensor(output, eng);
// Allocate user data.
std::vector<float> query_data(product(qv_sz));
std::vector<float> key_data(product(k_sz));
std::vector<float> scale_data(product(scale_sz), std::sqrt(p.head_size));
std::vector<float> mask_data(product(mask_sz));
std::vector<float> value_data(product(k_sz));
std::vector<float> output_data(product(qv_sz));
fill_random(query_data);
fill_random(key_data);
fill_random(value_data);
fill_mask(mask_data, static_cast<size_t>(p.seq_len));
// Write data to tensor object's handle.
write_to_dnnl_tensor(query_data.data(), ts_query);
write_to_dnnl_tensor(key_data.data(), ts_key);
write_to_dnnl_tensor(scale_data.data(), ts_scale);
write_to_dnnl_tensor(mask_data.data(), ts_mask);
write_to_dnnl_tensor(value_data.data(), ts_value);
// Warmup run.
// Execute the compiled partition of sdpa.
cp.execute(
strm, {ts_query, ts_key, ts_scale, ts_mask, ts_value}, {ts_output});
// Wait for the computation to finish.
strm.wait();
// First run.
auto start_first = std::chrono::steady_clock::now();
cp.execute(
strm, {ts_query, ts_key, ts_scale, ts_mask, ts_value}, {ts_output});
strm.wait();
auto end_first = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> dur_first
= end_first - start_first;
if (quick_test) return;
// Timing runs.
const int runs = std::max(min_runs, int(time_limit / dur_first.count()));
auto start = std::chrono::steady_clock::now();
for (int i = 0; i <= runs; i++)
cp.execute(strm, {ts_query, ts_key, ts_scale, ts_mask, ts_value},
{ts_output});
strm.wait();
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> duration = end - start;
// Display the results.
double avg_time = (duration.count() - dur_first.count()) / runs;
std::cout << "graph runs: " << runs + 1 << "; ";
std::cout << "avg_time: " << avg_time << " ms" << std::endl;
}
void bad_args() {
std::cerr << "Usage: graph-sdpa-cpp [cpu|gpu]\n"
" graph-sdpa-cpp [cpu|gpu] <mb> <seq_len> "
"<head_num> <head_size> [<query_num>]\n\n"
"On CPU, it's recommended to test with numactl and memory "
"allocation tools like jemalloc or tcmalloc.\n\n";
throw std::invalid_argument("Incorrect input arguments.");
}
enum class api_kind {
primitive,
graph,
};
void bench(api_kind api, engine::kind ekind, dnnl_data_type_t dt,
const sdpa_dims_t &p, double time_limit = 0.) {
try {
if (api == api_kind::primitive) {
bench_sdpa_primitives(
ekind, static_cast<memory::data_type>(dt), p, time_limit);
} else {
// api == api_kind::graph
bench_sdpa(ekind, static_cast<logical_tensor::data_type>(dt), p,
time_limit);
get_mem_pool().clear();
}
} catch (dnnl::error &e) {
// Catch and report unimplemented cases.
if (e.status == dnnl_unimplemented) {
std::cout << "unsupported sdpa" << std::endl;
} else
throw;
}
}
void sdpa_perf(engine::kind ekind, int argc, char **argv) {
// default testing parameters
sdpa_dims_t params = {32, 384, 16, 64, 384};
if (argc > 2) {
if (argc == 6) {
params.mb = std::atoi(argv[2]);
params.seq_len = std::atoi(argv[3]);
params.query_num = std::atoi(argv[3]);
params.head_num = std::atoi(argv[4]);
params.head_size = std::atoi(argv[5]);
} else if (argc == 7) {
params.mb = std::atoi(argv[2]);
params.seq_len = std::atoi(argv[3]);
params.head_num = std::atoi(argv[4]);
params.head_size = std::atoi(argv[5]);
params.query_num = std::atoi(argv[6]);
} else {
bad_args();
}
if (params.mb <= 0 || params.seq_len <= 0 || params.head_num <= 0
|| params.head_size <= 0) {
bad_args();
}
}
bench(api_kind::graph, ekind, dnnl_f32, params, 2000.0 /*ms*/);
bench(api_kind::graph, ekind, dnnl_bf16, params, 2000.0 /*ms*/);
bench(api_kind::graph, ekind, dnnl_f16, params, 2000.0 /*ms*/);
bench(api_kind::primitive, ekind, dnnl_f32, params, 2000.0 /*ms*/);
bench(api_kind::primitive, ekind, dnnl_bf16, params, 2000.0 /*ms*/);
bench(api_kind::primitive, ekind, dnnl_f16, params, 2000.0 /*ms*/);
}
int main(int argc, char **argv) {
return handle_example_errors(
sdpa_perf, parse_engine_kind(argc, argv, 5), argc, argv);
}