-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathsdpa_stacked_qkv.cpp
327 lines (275 loc) · 11.6 KB
/
sdpa_stacked_qkv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*******************************************************************************
* Copyright 2024-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cassert>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <memory>
#include <random>
#include <string>
#include <vector>
#include "oneapi/dnnl/dnnl.hpp"
#include "oneapi/dnnl/dnnl_graph.hpp"
#include "graph_example_utils.hpp"
using namespace dnnl;
using namespace dnnl::graph;
using layout_type = logical_tensor::layout_type;
using dim = logical_tensor::dim;
using dims = logical_tensor::dims;
struct sdpa_dims_t {
dim mb;
dim seq_len;
dim head_num;
dim head_size;
};
static const int min_runs = 4;
// this is changed from the fill_random() function in matmul_perf.cpp.
void fill_random(std::vector<float> &out) {
static std::vector<float> random_data_f;
constexpr size_t nrand = 1037;
if (random_data_f.empty()) {
std::mt19937 generator;
std::uniform_real_distribution<float> dist_f(-1.0f, 1.0f);
random_data_f.resize(nrand);
for (auto &d : random_data_f)
d = dist_f(generator);
}
for (size_t i = 0; i < out.size(); i += nrand) {
size_t chunk = std::min(nrand, out.size() - i);
std::memcpy(&out[i], random_data_f.data(), chunk * sizeof(float));
}
}
// initialize the mask with first 3/4 elements with 0s and the last 1/4 elements
// with -inf.
void fill_mask(std::vector<float> &mask, size_t seq_len) {
const size_t pos = seq_len * 3 / 4;
for (size_t i = 0; i < mask.size(); ++i) {
if (i % seq_len < pos)
mask[i] = 0.f;
else
mask[i] = -1 * std::numeric_limits<float>::infinity();
}
}
const char *get_type_string(logical_tensor::data_type dt) {
const char *type_string = "unknown";
#define TYPE_CASE(T) \
if (dt == logical_tensor::data_type::T) type_string = #T;
TYPE_CASE(f16);
TYPE_CASE(f32);
TYPE_CASE(bf16);
#undef TYPE_CASE
return type_string;
}
size_t size_of(logical_tensor::data_type dt) {
// This example only supports f32, bf16, and f16.
switch (dt) {
case logical_tensor::data_type::f32: return 4;
case logical_tensor::data_type::bf16:
case logical_tensor::data_type::f16: return 2;
default: assert(!"unknown data_type");
}
return (size_t)-1; /* not supposed to be reachable */
}
void print_test_case(logical_tensor::data_type dt, const sdpa_dims_t &p) {
std::cout << '[' << std::setw(4) << get_type_string(dt);
std::cout << " mb = " << p.mb << ", seq_len = " << p.seq_len
<< ", head_num = " << p.head_num
<< ", head_size = " << p.head_size;
std::cout << "] " << std::flush;
}
void bench_sdpa(engine::kind ekind, logical_tensor::data_type dt,
const sdpa_dims_t &p, double time_limit = 0.) {
const bool quick_test = (time_limit == 0.);
print_test_case(dt, p);
allocator alloc = create_allocator(ekind);
// Create execution dnnl::engine.
dnnl::engine eng = make_engine_with_allocator(ekind, 0, alloc);
// Create dnnl::stream.
dnnl::stream strm(eng);
// Stacked qkv tensor shape: [mb, seq_len, head_num, 3, head_size]. This
// follows the definition of StackedQueryKeyValueTensor in DirectML. The
// shape of each becomes [mb, seq_len, head_num, 1, head_size]. The strides
// of each: [seq_len x head_num x 3 x head_size, head_num x 3 x head_size, 3
// x head_size, head_size, 1]. The handle of each: Query: handle, Key:
// handle + head_size x sizeof(dt), Value: handle + 2 x head_size x
// sizeof(dt).
const dims stacked_qkv_sz = {p.mb, p.seq_len, p.head_num, 3, p.head_size};
// Calculate the 4D strides with transposed seq_len and head_num.
const dims qkv_strides = {p.seq_len * p.head_num * 3 * p.head_size,
3 * p.head_size, p.head_num * 3 * p.head_size, 1};
// Prepare input and output shapes to construct the sdpa graph.
const dims qkv_sz = {p.mb, p.head_num, p.seq_len, p.head_size};
const dims score_sz = {p.mb, p.head_num, p.seq_len, p.seq_len};
const dims scale_sz = {1};
const dims mask_sz = {p.mb, 1, 1, p.seq_len};
// Incremental IDs used to create logical tensors and operations.
size_t id = 0;
// Intermediate data type
const logical_tensor::data_type dt_inter = logical_tensor::data_type::f32;
// This logical tensor is not part of the graph but is used to generate the
// big chunk of device memory which should be already there in real user
// application or framework.
auto qkv = logical_tensor(id++, dt, stacked_qkv_sz, layout_type::strided);
// score = query x key.T. Unlike in sdpa.cpp, now the strides are specific.
auto query = logical_tensor(id++, dt, qkv_sz, qkv_strides);
auto key = logical_tensor(id++, dt, qkv_sz, qkv_strides);
// Though query and key are non-contiguous above, the output score is still
// contiguous.
auto score = logical_tensor(id++, dt_inter, score_sz, layout_type::strided);
auto bmm1 = op(id++, op::kind::MatMul, "bmm1");
bmm1.set_attr<bool>(op::attr::transpose_b, true);
bmm1.add_inputs({query, key});
bmm1.add_outputs({score});
// scaled_score = score / scale
auto scale = logical_tensor(id++, dt, scale_sz, layout_type::strided);
auto scaled_score
= logical_tensor(id++, dt_inter, score_sz, layout_type::strided);
auto scale_div = op(id++, op::kind::Divide, "scale_div");
scale_div.add_inputs({score, scale});
scale_div.add_outputs({scaled_score});
// masked_score = scaled_score + mask
auto mask = logical_tensor(id++, dt, mask_sz, layout_type::strided);
auto masked_score
= logical_tensor(id++, dt_inter, score_sz, layout_type::strided);
auto mask_add = op(id++, op::kind::Add, "mask_add");
mask_add.add_inputs({scaled_score, mask});
mask_add.add_outputs({masked_score});
// attention_probs = softmax(masked_score)
auto probs = logical_tensor(id++, dt, score_sz, layout_type::strided);
auto softmax = op(id++, op::kind::SoftMax, "softmax");
softmax.set_attr<int64_t>(op::attr::axis, -1);
softmax.add_inputs({masked_score});
softmax.add_outputs({probs});
// attention_output = attention_probs x value. The strides of value are
// specific.
auto value = logical_tensor(id++, dt, qkv_sz, qkv_strides);
auto output = logical_tensor(id++, dt, qkv_sz, layout_type::strided);
auto bmm2 = op(id++, op::kind::MatMul, "bmm2");
bmm2.add_inputs({probs, value});
bmm2.add_outputs({output});
// Construct a sdpa graph with engine kind and operations.
dnnl::graph::graph sdpa(ekind);
sdpa.add_op(bmm1);
sdpa.add_op(scale_div);
sdpa.add_op(mask_add);
sdpa.add_op(softmax);
sdpa.add_op(bmm2);
sdpa.finalize();
// Get partitions from the sdpa graph.
std::vector<partition> partitions = sdpa.get_partitions();
// This is just for oneDNN testing purpose.
if (partitions.size() != 1) {
std::cout << "unsupported sdpa" << std::endl;
return;
}
// Compile the partition with inputs, outputs, and an engine.
compiled_partition cp = partitions[0].compile(
{query, key, scale, mask, value}, {output}, eng);
// Create tensor objects
auto ts_qkv = tensor(qkv, eng);
auto ts_scale = tensor(scale, eng);
auto ts_mask = tensor(mask, eng);
auto ts_output = tensor(output, eng);
// Allocate user data for stacked qkv, scale, and mask.
std::vector<float> qkv_data(product(stacked_qkv_sz));
std::vector<float> scale_data(product(scale_sz), std::sqrt(p.head_size));
std::vector<float> mask_data(product(mask_sz));
// Generate host data for the example.
fill_random(qkv_data);
fill_mask(mask_data, static_cast<size_t>(p.seq_len));
// Write host data to the tensor objects.
write_to_dnnl_tensor(qkv_data.data(), ts_qkv);
write_to_dnnl_tensor(scale_data.data(), ts_scale);
write_to_dnnl_tensor(mask_data.data(), ts_mask);
// Create ts_query, ts_key, ts_value from data handle with offsets.
char *handle = reinterpret_cast<char *>(ts_qkv.get_data_handle());
auto ts_query = tensor(query, eng, handle);
auto ts_key = tensor(key, eng, handle + p.head_size * size_of(dt));
auto ts_value = tensor(value, eng, handle + 2 * p.head_size * size_of(dt));
// Warmup run.
// Execute the compiled partition of sdpa.
cp.execute(
strm, {ts_query, ts_key, ts_scale, ts_mask, ts_value}, {ts_output});
// Wait for the computation to finish.
strm.wait();
// First run.
auto start_first = std::chrono::steady_clock::now();
cp.execute(
strm, {ts_query, ts_key, ts_scale, ts_mask, ts_value}, {ts_output});
strm.wait();
auto end_first = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> dur_first
= end_first - start_first;
if (quick_test) return;
// Timing runs.
const int runs = std::max(min_runs, int(time_limit / dur_first.count()));
auto start = std::chrono::steady_clock::now();
for (int i = 0; i <= runs; i++)
cp.execute(strm, {ts_query, ts_key, ts_scale, ts_mask, ts_value},
{ts_output});
strm.wait();
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double, std::milli> duration = end - start;
// Display the results.
double avg_time = (duration.count() - dur_first.count()) / runs;
std::cout << "graph runs: " << runs + 1 << "; ";
std::cout << "avg_time: " << avg_time << " ms" << std::endl;
}
void bad_args() {
std::cerr << "Usage: graph-sdpa-stacked-qkv-cpp [cpu|gpu]\n"
" graph-sdpa-stacked-qkv-cpp [cpu|gpu] <mb> <seq_len> "
"<head_num> <head_size>\n\n";
throw std::invalid_argument("Incorrect input arguments.");
}
void bench(engine::kind ekind, dnnl_data_type_t dt, const sdpa_dims_t &p,
double time_limit = 0.) {
try {
bench_sdpa(ekind, static_cast<logical_tensor::data_type>(dt), p,
time_limit);
get_mem_pool().clear();
} catch (dnnl::error &e) {
// Catch and report unimplemented cases.
if (e.status == dnnl_unimplemented) {
std::cout << "unsupported sdpa" << std::endl;
} else
throw;
}
}
void sdpa_perf(engine::kind ekind, int argc, char **argv) {
// default testing parameters
sdpa_dims_t params = {32, 384, 16, 64};
if (argc > 2) {
if (argc == 6) {
params.mb = std::atoi(argv[2]);
params.seq_len = std::atoi(argv[3]);
params.head_num = std::atoi(argv[4]);
params.head_size = std::atoi(argv[5]);
} else {
bad_args();
}
if (params.mb <= 0 || params.seq_len <= 0 || params.head_num <= 0
|| params.head_size <= 0) {
bad_args();
}
}
bench(ekind, dnnl_f32, params, 2000.0 /*ms*/);
bench(ekind, dnnl_bf16, params, 2000.0 /*ms*/);
bench(ekind, dnnl_f16, params, 2000.0 /*ms*/);
}
int main(int argc, char **argv) {
return handle_example_errors(
sdpa_perf, parse_engine_kind(argc, argv, 4), argc, argv);
}