-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathcustom_driver.cpp
396 lines (343 loc) · 13 KB
/
custom_driver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/*******************************************************************************
* Copyright 2023-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <random>
#include "common.hpp"
#include "deserialize.hpp"
#include "dnn_types.hpp"
#include "dnnl_common.hpp"
#include "oneapi/dnnl/dnnl.h"
#include "utils/parallel.hpp"
#include "utils/perf_report.hpp"
#include "utils/settings.hpp"
#include "custom_driver.hpp"
extern "C" dnnl_status_t dnnl_memory_desc_create_with_string_tag(
dnnl_memory_desc_t *, int, const dnnl_dims_t, dnnl_data_type_t,
const char *);
namespace custom {
namespace genindex {
// GENINDEX OP
// DNNL_ARG_SRC: src
// DNNL_ARG_DST: dst
std::vector<int> exec_args = {
DNNL_ARG_SRC,
DNNL_ARG_DST,
};
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
const prb_t *prb, res_t *res) {
const auto &ref_engine = get_cpu_engine();
for (auto &entry : mem_map) {
const int exec_arg = entry.first;
auto &mem = entry.second;
ref_mem_map.emplace(
exec_arg, dnn_mem_t(mem.md_, dnnl_f32, tag::abx, ref_engine));
auto &ref_mem = ref_mem_map[exec_arg];
switch (exec_arg) {
case DNNL_ARG_SRC:
// For GenIndex op, the input value doesn't affect the output
// value, it doesn't matter what value we fill in.
SAFE(::custom::fill_mem(mem, ref_mem, 0, 0), WARN);
break;
default: break;
}
}
return OK;
}
int execute(const prb_t *prb, const args_t &args, res_t *res) {
dnn_mem_t &dst = const_cast<dnn_mem_t &>(args.find(DNNL_ARG_DST));
auto ndims = dst.ndims();
const size_t axis = prb->axis < 0 ? (prb->axis + ndims) : prb->axis;
auto dims = dst.dims();
auto strides = dst.strides();
benchdnn_parallel_nd(dst.nelems(), [&](int64_t index) {
// This function resembles dnn_mem_t::get_idx but has a format + axis
// peculiarity which can't be covered in get_idx function without
// sacrificing performance, and the current code as is.
size_t offdst = 0, result = 0;
for (int i = 0; i < ndims; i++) {
// calculate the idx on each dimension
int idx = index % dims[i];
if ((size_t)i == axis) result = idx;
index /= dims[i];
// accumulate offset for each arg
offdst += strides[i] * idx;
if (index == 0) break;
}
dst.set_elem(offdst, result);
});
return OK;
}
} // namespace genindex
namespace select {
// SELECT OP
// DNNL_ARG_WEIGHTS: cond
// DNNL_ARG_SRC_0: src_0
// DNNL_ARG_SRC_1: src_1
// DNNL_ARG_DST: dst
// dst[i] = cond[i] ? src_0[i] : src_1[i]
std::vector<int> exec_args = {
DNNL_ARG_WEIGHTS,
DNNL_ARG_SRC_0,
DNNL_ARG_SRC_1,
DNNL_ARG_DST,
};
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
const prb_t *prb, res_t *res) {
const auto &ref_engine = get_cpu_engine();
for (auto &entry : mem_map) {
const int exec_arg = entry.first;
auto &mem = entry.second;
ref_mem_map.emplace(
exec_arg, dnn_mem_t(mem.md_, dnnl_f32, tag::abx, ref_engine));
auto &ref_mem = ref_mem_map[exec_arg];
switch (exec_arg) {
case DNNL_ARG_SRC_0:
SAFE(::custom::fill_mem(mem, ref_mem, 0, 4), WARN);
break;
case DNNL_ARG_SRC_1:
SAFE(::custom::fill_mem(mem, ref_mem, -2, 1), WARN);
break;
case DNNL_ARG_WEIGHTS:
SAFE(::custom::fill_mem(mem, ref_mem, 0, 1), WARN);
break;
default: break;
}
}
return OK;
}
int execute(const prb_t *prb, const args_t &args, res_t *res) {
const dnn_mem_t &src0 = args.find(DNNL_ARG_SRC_0);
const dnn_mem_t &src1 = args.find(DNNL_ARG_SRC_1);
const dnn_mem_t &wei = args.find(DNNL_ARG_WEIGHTS);
dnn_mem_t &dst = const_cast<dnn_mem_t &>(args.find(DNNL_ARG_DST));
benchdnn_parallel_nd(dst.nelems(), [&](int64_t index) {
size_t offsrc0 = 0, offsrc1 = 0, offwei = 0, offdst = 0;
for (int i = 0; i < dst.ndims(); i++) {
// calculate the idx on each dimension
int idx = index % dst.dims()[i];
index /= dst.dims()[i];
// accumulate offset for each arg
offwei += wei.strides()[i] * (wei.dims()[i] < 2 ? 0 : idx);
offsrc0 += src0.strides()[i] * (src0.dims()[i] < 2 ? 0 : idx);
offsrc1 += src1.strides()[i] * (src1.dims()[i] < 2 ? 0 : idx);
offdst += dst.strides()[i] * (dst.dims()[i] < 2 ? 0 : idx);
}
dst.set_elem(offdst,
wei.get_elem(offwei) ? src0.get_elem(offsrc0)
: src1.get_elem(offsrc1));
});
return OK;
}
} // namespace select
namespace transpose {
// TRANSPOSE OP
// DNNL_ARG_SRC: src
// DNNL_ARG_DST: dst
// order attribute: a permutation defines how to transpose
std::vector<int> exec_args = {
DNNL_ARG_SRC,
DNNL_ARG_DST,
};
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
const prb_t *prb, res_t *res) {
const auto &ref_engine = get_cpu_engine();
for (auto &entry : mem_map) {
const int exec_arg = entry.first;
auto &mem = entry.second;
ref_mem_map.emplace(
exec_arg, dnn_mem_t(mem.md_, dnnl_f32, tag::abx, ref_engine));
auto &ref_mem = ref_mem_map[exec_arg];
switch (exec_arg) {
case DNNL_ARG_SRC:
// Use `7` not to mess with scales for s8 which may create a
// `8 * 8 (= 128) = -128` for s8.
SAFE(::custom::fill_mem(mem, ref_mem, -8, 7), WARN);
break;
default: break;
}
}
return OK;
}
int execute(const prb_t *prb, const args_t &args, res_t *res) {
const auto &src = args.find(DNNL_ARG_SRC);
auto tag = ::std::get<0>(prb->arg_mds_.at(DNNL_ARG_SRC));
dnn_mem_t pad(src, src.dt(), tag, get_test_engine());
::graph::permute_md(pad, prb->order);
int ret = const_cast<dnn_mem_t &>(args.find(DNNL_ARG_DST)).reorder(pad);
if (ret != OK) { res->state = FAILED; }
return ret;
}
} // namespace transpose
namespace reshape {
// RESHAPE OP
// DNNL_ARG_SRC: src
// DNNL_ARG_DST: dst
std::vector<int> exec_args = {
DNNL_ARG_SRC,
DNNL_ARG_DST,
};
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
const prb_t *prb, res_t *res) {
const auto &ref_engine = get_cpu_engine();
for (auto &entry : mem_map) {
const int exec_arg = entry.first;
auto &mem = entry.second;
ref_mem_map.emplace(
exec_arg, dnn_mem_t(mem.md_, dnnl_f32, tag::abx, ref_engine));
auto &ref_mem = ref_mem_map[exec_arg];
switch (exec_arg) {
case DNNL_ARG_SRC:
// Use `7` not to mess with scales for s8 which may create a
// `8 * 8 (= 128) = -128` for s8.
SAFE(::custom::fill_mem(mem, ref_mem, -8, 7), WARN);
break;
default: break;
}
}
return OK;
}
int execute(const prb_t *prb, const args_t &args, res_t *res) {
const dnn_mem_t &src = args.find(DNNL_ARG_SRC);
dnn_mem_t &dst = const_cast<dnn_mem_t &>(args.find(DNNL_ARG_DST));
// generate dense stride
dnn_mem_t pad(src.md_, src.dt(), tag::abx, get_test_engine());
int ret = pad.reorder(src);
if (ret != OK) { res->state = FAILED; }
// update output shape with dense stride
dnnl_memory_desc_destroy(pad.md_);
dnnl_memory_desc_create_with_string_tag(&pad.md_, dst.ndims(), dst.dims(),
dst.dt(), normalize_tag(tag::abx, dst.ndims()).c_str());
ret = dst.reorder(pad);
if (ret != OK) { res->state = FAILED; }
return ret;
}
} // namespace reshape
dnnl_status_t init_pd(init_pd_args_t<prb_t> &init_pd_args) {
return dnnl_success;
}
std::vector<int> supported_exec_args(const prb_t *prb) {
std::vector<int> exec_args;
switch (prb->alg) {
case GENINDEX: return ::custom::genindex::exec_args;
case SELECT: return ::custom::select::exec_args;
case TRANSPOSE: return ::custom::transpose::exec_args;
case RESHAPE: return ::custom::reshape::exec_args;
default: assert(!"unknown alg"); break;
}
return exec_args;
}
void setup_cmp(compare::compare_t &cmp, const prb_t *prb, data_kind_t kind,
const args_t &ref_args) {
switch (prb->alg) {
case GENINDEX:
case SELECT:
case TRANSPOSE:
case RESHAPE: cmp.set_zero_trust_percent(100.f); break;
default: assert(!"unknown alg"); break;
}
}
int fill_mem(dnn_mem_t &mem_dt, dnn_mem_t &mem_fp, int f_min, int f_max) {
const auto dt = mem_dt.dt();
if (has_bench_mode_modifier(mode_modifier_t::no_ref_memory)
&& !is_integral_dt(dt)) {
// Use data filled by benchdnn for `no_ref_memory`, except some
// customized operations in Graph API which expect the input
// values to indicate indexing information, especially for integral
// inputs. Hence we need to be limited the input value to the
// provided range.
return OK;
}
const auto nelems = mem_fp.nelems();
if (nelems == 0) return OK;
f_min = (dt == dnnl_u8 && f_min < 0) ? 0 : f_min;
const int64_t n_chunks = 16;
const int64_t chunk_size = div_up(nelems, n_chunks);
benchdnn_parallel_nd(n_chunks, [&](int64_t idx_chunk) {
int64_t idx_start = idx_chunk * chunk_size;
int64_t idx_end = MIN2(idx_start + chunk_size, nelems);
std::minstd_rand int_seed(nelems + idx_start + 1);
std::uniform_int_distribution<> gen(f_min, f_max);
for (int64_t idx = idx_start; idx < idx_end; ++idx) {
float value = gen(int_seed);
mem_fp.set_elem(idx, round_to_nearest_representable(dt, value));
}
});
SAFE(mem_dt.reorder(mem_fp), WARN);
return OK;
}
void init_memory_args(dnn_mem_map_t &mem_map, const prb_t *prb,
const std::vector<int> &supported_exec_args,
const engine_t &test_engine) {
for (const auto &exec_arg : supported_exec_args) {
if (prb->arg_mds_.find(exec_arg) == prb->arg_mds_.end()) {
assert(!"missing required args");
SAFE_V(FAIL);
}
auto arg_mds_ = prb->arg_mds_.find(exec_arg)->second;
dnnl_dims_t dnnl_dims {};
auto dims = ::std::get<1>(arg_mds_);
for (size_t i = 0; i < dims.size(); i++) {
dnnl_dims[i] = dims[i];
}
mem_map.emplace(exec_arg,
dnn_mem_t(static_cast<int>(dims.size()), dnnl_dims,
std::get<2>(arg_mds_), ::std::get<0>(arg_mds_),
test_engine));
}
}
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
const prb_t *prb, res_t *res) {
switch (prb->alg) {
case GENINDEX:
SAFE(::custom::genindex::init_ref_memory_args(
ref_mem_map, mem_map, prb, res),
WARN);
break;
case SELECT:
SAFE(::custom::select::init_ref_memory_args(
ref_mem_map, mem_map, prb, res),
WARN);
break;
case TRANSPOSE:
SAFE(::custom::transpose::init_ref_memory_args(
ref_mem_map, mem_map, prb, res),
WARN);
break;
case RESHAPE:
SAFE(::custom::reshape::init_ref_memory_args(
ref_mem_map, mem_map, prb, res),
WARN);
break;
default: assert(!"unknown alg"); break;
}
// Don't keep reference memory if it is not used further.
if (!has_bench_mode_bit(mode_bit_t::corr)) ref_mem_map.clear();
return OK;
}
void skip_unimplemented_prb(const prb_t *prb, res_t *res) {}
int execute(const prb_t *prb, const args_t &args, res_t *res) {
int ret = FAILED;
switch (prb->alg) {
case GENINDEX: ret = ::custom::genindex::execute(prb, args, res); break;
case SELECT: ret = ::custom::select::execute(prb, args, res); break;
case TRANSPOSE:
ret = ::custom::transpose::execute(prb, args, res);
break;
case RESHAPE: ret = ::custom::reshape::execute(prb, args, res); break;
default: assert(!"unknown alg"); break;
}
return ret;
}
} // namespace custom