-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathjit_uni_reorder_direct_copy.cpp
402 lines (328 loc) · 14.2 KB
/
jit_uni_reorder_direct_copy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*******************************************************************************
* Copyright 2018-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "common/dnnl_thread.hpp"
#include "cpu/x64/jit_uni_reorder_direct_copy.hpp"
#include "cpu/x64/jit_generator.hpp"
#include "cpu/x64/utils/jit_io_helper.hpp"
using namespace Xbyak;
namespace dnnl {
namespace impl {
namespace cpu {
namespace x64 {
template <typename Vmm>
struct direct_copy_kernel_t
: public jit_uni_reorder_direct_copy_t::kernel_base_t,
public jit_generator {
DECLARE_CPU_JIT_AUX_FUNCTIONS(direct_copy_kernel_t)
direct_copy_kernel_t(const reorder_pd_t *pd, cpu_isa_t isa)
: jit_uni_reorder_direct_copy_t::kernel_base_t(pd)
, jit_generator(jit_name(), isa)
, isa_(isa)
, src_dt_(pd_->src_md()->data_type)
, dst_dt_(pd_->dst_md()->data_type) {
assert(!utils::one_of(isa_, isa_undef, isa_all));
const memory_desc_wrapper src_d(pd_->src_md());
tail_size_ = src_d.nelems() % simd_w_;
io::io_conf_t io_conf;
io::io_tail_conf_t io_tail_conf(
simd_w_, tail_size_, tail_opmask_idx_, tail_vmm_idx_, reg_tmp_);
io::io_emu_bf16_conf_t io_bf16_conf(emu_zmm_1_idx_, emu_zmm_2_idx_,
emu_zmm_3_idx_, reg_tmp_, emu_zmm_4_idx_);
io::io_emu_fp8_conf_t io_fp8_conf(emu_zmm_1_idx_, emu_zmm_2_idx_,
emu_zmm_3_idx_, emu_zmm_4_idx_, emu_zmm_5_idx_,
emu_kmask_aux_idx_, reg_tmp_);
io::io_saturation_conf_t io_saturation_conf(
zero_idx_, saturation_ubound_idx_, reg_tmp_);
io_ = io::jit_io_multi_dt_helper_t<Vmm>(this, isa_, {src_dt_, dst_dt_},
io_conf, io_tail_conf, io_bf16_conf,
{{dst_dt_, io_saturation_conf}}, utils::nullopt, io_fp8_conf);
}
static constexpr int vlen_ = vreg_traits<Vmm>::vlen;
static constexpr int simd_w_ = vlen_ / sizeof(float);
static constexpr int unroll_12_ = 12;
static constexpr int unroll_4_ = 4;
int get_max_unroll() const override { return unroll_12_; }
void operator()(
const void *src, void *dst, size_t work_amount) const override {
ker_args_t args;
args.src = src;
args.dst = dst;
args.work_amount = work_amount;
jit_generator::operator()(&args);
}
status_t create_kernel() override { return jit_generator::create_kernel(); }
Address src_ptr(size_t offt = 0) { return ptr[reg_src + offt]; }
Address dst_ptr(size_t offt = 0) { return ptr[reg_dst + offt]; }
Vmm vmm_src(int idx) const {
// Incorporate `+ 1` here as `0th` index is used for tail on AVX2.
return Vmm(idx + 1);
}
void copy(const int unroll, const bool tail) {
// Copy two simdw at once in vectorized loop first when `ne_convert`
// instructions are available for xf16.
if (isa_ == avx2_vnni_2
&& (utils::one_of(src_dt_, data_type::bf16, data_type::f16))
&& (unroll % 2 == 0)) {
for (size_t i = 0; i < static_cast<size_t>(unroll) / 2; i++) {
const Vmm &vmm_src_even = vmm_src(2 * i);
const Vmm &vmm_src_odd = vmm_src(2 * i + 1);
Vmm vmm_tmp(vmm_tmp_idx_);
io_[src_dt_]->load_two_simdw_xf16(
src_ptr(2 * i * types::data_type_size(src_dt_)
* simd_w_),
vmm_src_even, vmm_src_odd);
io_[src_dt_]->merge_interleaved_to_plain(
vmm_src_even, vmm_src_odd, vmm_tmp);
io_[dst_dt_]->store(vmm_src_even,
dst_ptr(2 * i * types::data_type_size(dst_dt_)
* simd_w_),
tail);
io_[dst_dt_]->store(vmm_src_odd,
dst_ptr((2 * i + 1) * types::data_type_size(dst_dt_)
* simd_w_),
tail);
}
} else {
for (int i = 0; i < unroll; i++) {
io_[src_dt_]->load(
src_ptr(i * types::data_type_size(src_dt_) * simd_w_),
vmm_src(i), tail);
}
for (int i = 0; i < unroll; i++) {
io_[dst_dt_]->store(vmm_src(i),
dst_ptr(i * types::data_type_size(dst_dt_) * simd_w_),
tail);
}
}
if (tail) return;
add(reg_src, unroll * types::data_type_size(src_dt_) * simd_w_);
add(reg_dst, unroll * types::data_type_size(dst_dt_) * simd_w_);
sub(reg_work_amount, unroll * simd_w_);
}
void generate() override {
preamble();
if (tail_size_) io_.prepare_tail_mask();
if (is_bf16()) io_.init_bf16();
io_.init_saturate_f32({dst_dt_});
Reg64 param = abi_param1;
#define PARAM_OFF(x) offsetof(ker_args_t, x)
mov(reg_src, ptr[param + PARAM_OFF(src)]);
mov(reg_dst, ptr[param + PARAM_OFF(dst)]);
mov(reg_work_amount, ptr[param + PARAM_OFF(work_amount)]);
#undef PARAM_OFF
Label unroll_12_start, unroll_4_start, full_vector_start, tail_start,
end;
L(unroll_12_start);
{
cmp(reg_work_amount, unroll_12_ * simd_w_);
jl(unroll_4_start, T_NEAR);
copy(unroll_12_, false);
jmp(unroll_12_start, T_NEAR);
}
L(unroll_4_start);
{
cmp(reg_work_amount, unroll_4_ * simd_w_);
jl(full_vector_start, T_NEAR);
copy(unroll_4_, false);
jmp(unroll_4_start, T_NEAR);
}
L(full_vector_start);
{
cmp(reg_work_amount, simd_w_);
jl(tail_start, T_NEAR);
copy(1, false);
jmp(full_vector_start, T_NEAR);
}
L(tail_start);
{
cmp(reg_work_amount, 0);
jle(end, T_NEAR);
copy(1, true);
}
L(end);
postamble();
if (is_f8()) io_.prepare_table_fp8();
}
private:
struct ker_args_t {
const void *src;
void *dst;
size_t work_amount;
};
bool is_bf16() const {
return utils::one_of(data_type::bf16, src_dt_, dst_dt_);
}
bool is_f16() const {
return utils::one_of(data_type::f16, src_dt_, dst_dt_);
}
bool is_f8() const {
return utils::one_of(data_type::f8_e4m3, src_dt_, dst_dt_)
|| utils::one_of(data_type::f8_e5m2, src_dt_, dst_dt_);
}
cpu_isa_t isa_;
data_type_t src_dt_, dst_dt_;
io::jit_io_multi_dt_helper_t<Vmm> io_;
size_t tail_size_;
const Reg64 reg_tmp_ = rax;
const Reg64 reg_src = r8;
const Reg64 reg_dst = r9;
const Reg64 reg_work_amount = r10;
const int tail_opmask_idx_ = 1;
const int tail_vmm_idx_ = 0;
// Indices from 1 to 12 are occupied in the unrolled body.
const int vmm_tmp_idx_ = 13;
const int zero_idx_ = 14;
const int saturation_ubound_idx_ = 15;
const int emu_zmm_1_idx_ = 27;
const int emu_zmm_2_idx_ = 28;
const int emu_zmm_3_idx_ = 29;
const int emu_zmm_4_idx_ = 30;
const int emu_zmm_5_idx_ = 31;
const int emu_kmask_aux_idx_ = 2;
};
status_t jit_uni_reorder_direct_copy_t::pd_t::create(reorder_pd_t **reorder_pd,
engine_t *engine, const primitive_attr_t *attr, engine_t *src_engine,
const memory_desc_t *src_md, engine_t *dst_engine,
const memory_desc_t *dst_md) {
auto _pd = make_unique_pd<pd_t>(
attr, src_engine->kind(), src_md, dst_engine->kind(), dst_md);
if (_pd == nullptr) return status::out_of_memory;
CHECK(_pd->init(engine, src_engine, dst_engine));
return safe_ptr_assign(*reorder_pd, _pd.release());
}
status_t jit_uni_reorder_direct_copy_t::pd_t::init(
engine_t *engine, engine_t *src_engine, engine_t *dst_engine) {
using namespace data_type;
VDISPATCH_REORDER(is_dense_format_kind({src_md(), dst_md()}),
VERBOSE_UNSUPPORTED_SPARSE_CFG);
isa_ = get_max_cpu_isa();
const auto src_dt = src_md()->data_type;
const auto dst_dt = dst_md()->data_type;
const memory_desc_wrapper src_d(src_md());
const memory_desc_wrapper dst_d(dst_md());
const auto blocks_size = src_d.blk_size();
VDISPATCH_REORDER(!src_d.has_runtime_dims_or_strides(),
VERBOSE_RUNTIMEDIM_UNSUPPORTED);
VDISPATCH_REORDER(!dst_d.has_runtime_dims_or_strides(),
VERBOSE_RUNTIMEDIM_UNSUPPORTED);
VDISPATCH_REORDER(
src_d.is_blocking_desc(), VERBOSE_UNSUPPORTED_FORMAT_KIND);
VDISPATCH_REORDER(
dst_d.is_blocking_desc(), VERBOSE_UNSUPPORTED_FORMAT_KIND);
// Note: io_helper has an implicit conversion to f32 which is incorrect for
// s32->s32. Disabling it for now.
const bool is_s32 = utils::everyone_is(s32, src_dt, dst_dt);
VDISPATCH_REORDER(!is_s32, VERBOSE_UNSUPPORTED_DT);
VDISPATCH_REORDER(IMPLICATION(utils::one_of(bf16, src_dt, dst_dt),
mayiuse(avx512_core) || mayiuse(avx2_vnni_2)),
VERBOSE_ISA_DT_MISMATCH);
VDISPATCH_REORDER(
IMPLICATION(utils::one_of(f16, src_dt, dst_dt),
mayiuse(avx512_core_fp16) || mayiuse(avx2_vnni_2)),
VERBOSE_ISA_DT_MISMATCH);
VDISPATCH_REORDER(
IMPLICATION(utils::one_of(bf16, src_dt, dst_dt) && blocks_size < 8,
mayiuse(avx512_core_bf16)),
VERBOSE_ISA_DT_MISMATCH);
VDISPATCH_REORDER(
IMPLICATION(utils::one_of(f16, src_dt, dst_dt) && blocks_size < 8,
mayiuse(avx512_core_fp16)),
VERBOSE_ISA_DT_MISMATCH);
const bool is_f8 = utils::one_of(f8_e4m3, src_dt, dst_dt)
|| utils::one_of(f8_e5m2, src_dt, dst_dt);
VDISPATCH_REORDER(IMPLICATION(is_f8, mayiuse(avx512_core_amx)),
VERBOSE_ISA_DT_MISMATCH);
VDISPATCH_REORDER(IMPLICATION(is_f8,
!utils::one_of(src_dt, u8, s8)
&& !utils::one_of(dst_dt, u8, s8)),
VERBOSE_UNSUPPORTED_DT_CFG);
// Direct copy operates only on identical formats.
VDISPATCH_REORDER(src_d.similar_to(dst_d, true, false, 0),
VERBOSE_TENSOR_FORMAT_MISMATCH, "src", "dst");
VDISPATCH_REORDER(src_d.extra().flags == dst_d.extra().flags,
VERBOSE_UNSUPPORTED_MD_FLAG, "src or dst");
VDISPATCH_REORDER(IMPLICATION(src_d.extra().flags > 0UL,
src_d.additional_buffer_size()
== dst_d.additional_buffer_size()),
VERBOSE_UNSUPPORTED_MD_FLAG, "src or dst");
VDISPATCH_REORDER(attr()->has_default_values(), VERBOSE_UNSUPPORTED_ATTR);
return status::success;
}
jit_uni_reorder_direct_copy_t::kernel_base_t *
jit_uni_reorder_direct_copy_t::kernel_base_t::create(
const reorder_pd_t *pd, cpu_isa_t isa) {
// Reorder must support blocked formats such as aBx8b.
// These variables will help to dispatch smaller blocks into proper kernels.
const bool has_blocks = !memory_desc_wrapper(pd->src_md()).is_plain();
const auto blocks_size = memory_desc_wrapper(pd->src_md()).blk_size();
if (is_superset(isa, avx512_core)
&& IMPLICATION(has_blocks, blocks_size >= 16)) {
return new direct_copy_kernel_t<Zmm>(pd, isa);
} else if (is_superset(isa, avx2)
&& IMPLICATION(has_blocks, blocks_size >= 8)) {
return new direct_copy_kernel_t<Ymm>(pd, isa);
} else if (is_superset(isa, sse41)) {
return new direct_copy_kernel_t<Xmm>(pd, isa);
} else {
assert(!"unexpected");
}
return nullptr;
}
status_t jit_uni_reorder_direct_copy_t::init(engine_t *engine) {
const auto isa = pd()->isa_;
CHECK(safe_ptr_assign(kernel_, kernel_base_t::create(pd(), isa)));
return kernel_->create_kernel();
}
status_t jit_uni_reorder_direct_copy_t::execute(const exec_ctx_t &ctx) const {
const auto in = CTX_IN_MEM(const char *, DNNL_ARG_FROM);
auto out = CTX_OUT_MEM(char *, DNNL_ARG_TO);
const memory_desc_wrapper src_d(pd()->src_md());
const memory_desc_wrapper dst_d(pd()->dst_md());
const auto src_dt_size = src_d.data_type_size();
const auto dst_dt_size = dst_d.data_type_size();
const auto nelems = src_d.nelems(true);
const int simd_w = isa_max_vlen(pd()->isa_) / sizeof(float);
// If nelem is small, we do sequential copy and don't spawn threads
const dim_t thr_granularity
= static_cast<dim_t>(kernel_->get_max_unroll()) * simd_w;
int nthr = nelems < thr_granularity ? 1 : 0;
parallel(nthr, [&](const int ithr, const int nthr) {
dim_t start {0}, end {0};
balance211(utils::div_up(nelems, simd_w), nthr, ithr, start, end);
start = nstl::min(nelems, start * simd_w);
end = nstl::min(nelems, end * simd_w);
if (start == end) return;
(*kernel_)(in + (start + src_d.offset0()) * src_dt_size,
out + (start + dst_d.offset0()) * dst_dt_size, end - start);
});
if (src_d.is_additional_buffer()) {
// Verified in pd_t::init();
assert(src_d.extra().flags == dst_d.extra().flags);
const auto additional_size = src_d.additional_buffer_size();
const auto data_size = src_d.size(/* index = */ 0,
/* include_additional_size = */ false);
std::memcpy(out + data_size * dst_dt_size, in + data_size * src_dt_size,
additional_size);
}
return status::success;
}
template struct direct_copy_kernel_t<Zmm>;
template struct direct_copy_kernel_t<Ymm>;
template struct direct_copy_kernel_t<Xmm>;
} // namespace x64
} // namespace cpu
} // namespace impl
} // namespace dnnl