-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathfusion_info.cpp
339 lines (316 loc) · 15.7 KB
/
fusion_info.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*******************************************************************************
* Copyright 2022-2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <functional>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <unordered_map>
#include "graph/interface/c_types_map.hpp"
#include "graph/interface/op.hpp"
#include "graph/interface/value.hpp"
#include "graph/utils/utils.hpp"
#include "graph/backend/dnnl/fusion_info.hpp"
#include "graph/backend/dnnl/internal_attrs.hpp"
#include "graph/backend/dnnl/internal_ops.hpp"
#include "graph/backend/dnnl/utils.hpp"
#include "oneapi/dnnl/dnnl.hpp"
namespace dnnl {
namespace impl {
namespace graph {
namespace dnnl_impl {
using value_ptr = std::shared_ptr<value_t>;
dnnl::primitive_attr make_dnnl_primitive_attr(
const std::shared_ptr<op_t> &op, const fusion_info_t &fusion_info) {
dnnl::primitive_attr attr;
std::vector<int64_t> default_groups;
if (fusion_info.dst_scales_) {
const op_t *dst_scales_op = fusion_info.dst_scales_->get_op();
assertm(fusion_info.with_runtime_scales(false, 0),
"only support runtime dst scales.\n");
int mask = 0;
int64_t dt = 0;
if (dst_scales_op->has_attr(op_attr::axis)
&& dst_scales_op->has_attr(op_attr::qtype)) {
int64_t axis = dst_scales_op->get_attr<int64_t>(op_attr::axis);
std::string qtype
= dst_scales_op->get_attr<std::string>(op_attr::qtype);
mask = qtype == "per_tensor" ? 0 : 1 << axis;
dt = dst_scales_op->has_attr(op_attr::data_type)
? dst_scales_op->get_attr<int64_t>(op_attr::data_type)
: dnnl_f32;
}
attr.set_scales(DNNL_ARG_DST, mask, default_groups,
static_cast<dnnl::memory::data_type>(dt));
}
// convert input scales
if (!fusion_info.input_scales_.empty()) {
for (const auto &in_scales : fusion_info.input_scales_) {
size_t in_scales_indices = in_scales.first;
const op_t *in_scales_op = in_scales.second->get_op();
assertm(fusion_info.with_runtime_scales(true, in_scales_indices),
"only support runtime src scales.\n");
int mask = 0;
if (in_scales_op->has_attr(op_attr::qtype)) {
std::string qtype
= in_scales_op->get_attr<std::string>(op_attr::qtype);
const auto scales_data_type
= in_scales_op->has_attr(op_attr::data_type)
? in_scales_op->get_attr<int64_t>(op_attr::data_type)
: dnnl_f32;
if (qtype == "per_tensor") {
mask = 0;
attr.set_scales(in_scales_indices == 0 ? DNNL_ARG_SRC
: DNNL_ARG_WEIGHTS,
mask, default_groups,
static_cast<dnnl::memory::data_type>(
scales_data_type));
} else if (qtype == "per_channel") { // per-channel quantization
int64_t axis = in_scales_op->has_attr(op_attr::axis)
? in_scales_op->get_attr<int64_t>(op_attr::axis)
: 1;
if (impl::utils::one_of(op->get_kind(),
op_kind::dnnl_convolution,
op_kind::dnnl_convtranspose)
&& in_scales_indices == 1) {
bool with_groups = false;
if (op->get_input_value(1)->has_producer()
&& op->get_input_op(1)->get_kind()
== op_kind::dnnl_to_group) {
const auto &to_group = op->get_input_op(1);
if (to_group->get_attr<int64_t>(op_attr::groups)
> 1) {
with_groups = true;
}
}
mask = with_groups ? 3 : 1;
} else {
mask = 1 << axis;
}
attr.set_scales(in_scales_indices == 0 ? DNNL_ARG_SRC
: DNNL_ARG_WEIGHTS,
mask, default_groups,
static_cast<dnnl::memory::data_type>(
scales_data_type));
} else { // per-group quantization
// oneDNN only supports weights-decompressed matmul
if (in_scales_indices != 1
|| op->get_kind() != op_kind::dnnl_matmul)
continue;
const auto &group_shape
= in_scales_op->get_attr<std::vector<int64_t>>(
op_attr::group_shape);
// Currently oneDNN only supports grouped scales and zps on
// last two dimensions.
std::vector<int64_t> groups(
group_shape.end() - 2, group_shape.end());
int64_t mask = (1 << group_shape.size()) - 1;
attr.set_scales(DNNL_ARG_WEIGHTS, mask, groups,
static_cast<dnnl::memory::data_type>(
scales_data_type));
}
}
}
}
// convert input zps
if (!fusion_info.input_zps_.empty()) {
for (const auto &in_zps : fusion_info.input_zps_) {
size_t in_zps_indices = in_zps.first;
const op_t *in_zps_op = in_zps.second->get_op();
assertm(fusion_info.with_runtime_zero_points(true, in_zps_indices),
"only support runtime src zero points.\n");
if (in_zps_op->has_attr(op_attr::qtype)) {
std::string qtype
= in_zps_op->get_attr<std::string>(op_attr::qtype);
const auto zps_data_type
= in_zps_op->has_attr(op_attr::data_type)
? in_zps_op->get_attr<int64_t>(op_attr::data_type)
: dnnl_s32;
if (qtype == "per_group") {
// oneDNN only supports weights-decompressed matmul
if (in_zps_indices != 1
|| op->get_kind() != op_kind::dnnl_matmul)
break;
const auto &group_shape
= in_zps_op->get_attr<std::vector<int64_t>>(
op_attr::group_shape);
// Currently oneDNN only supports grouped scales and zps on
// last two dimensions.
std::vector<int64_t> groups(
group_shape.end() - 2, group_shape.end());
int64_t mask = (1 << group_shape.size()) - 1;
// Currently oneDNN only supports grouped zps on last two dimensions.
attr.set_zero_points(DNNL_ARG_WEIGHTS, mask, groups,
static_cast<dnnl::memory::data_type>(
zps_data_type));
} else {
int mask = 0;
attr.set_zero_points(in_zps_indices == 0 ? DNNL_ARG_SRC
: DNNL_ARG_WEIGHTS,
mask, default_groups,
static_cast<dnnl::memory::data_type>(
zps_data_type));
}
}
}
}
// convert output zps
if (fusion_info.output_zps_) {
const op_t *output_zps_op = fusion_info.output_zps_->get_op();
const auto zps_data_type = output_zps_op->has_attr(op_attr::data_type)
? output_zps_op->get_attr<int64_t>(op_attr::data_type)
: dnnl_s32;
assertm(fusion_info.with_runtime_zero_points(false, 0),
"only support runtime dst zero points.\n");
int mask = 0;
attr.set_zero_points(DNNL_ARG_DST, mask, default_groups,
static_cast<dnnl::memory::data_type>(zps_data_type));
}
// convert post ops
dnnl::post_ops dnnl_pops;
for (auto &pop : fusion_info.get_post_ops()) {
const op_t *fused_op = pop->get_op();
const auto fused_op_kind = fused_op->get_kind();
if (fused_op_kind == op_kind::dnnl_eltwise) {
float alpha = 0.f;
float beta = 0.f;
if (fused_op->has_attr(op_attr::alpha)) {
alpha = fused_op->get_attr<float>(op_attr::alpha);
}
if (fused_op->has_attr(op_attr::beta)) {
beta = fused_op->get_attr<float>(op_attr::beta);
}
const auto alg = static_cast<dnnl::algorithm>(
fused_op->get_attr<int64_t>(op_attr::alg_kind));
dnnl_pops.append_eltwise(alg, alpha, beta);
} else if (fused_op_kind == op_kind::dnnl_binary) {
const auto alg = static_cast<dnnl::algorithm>(
fused_op->get_attr<int64_t>(op_attr::alg_kind));
const auto &extra_inputs = pop->get_unfused_input_indices();
float scale = pop->get_scale();
int32_t zp = pop->get_zp();
const auto psrc_val = op->get_input_value(extra_inputs[0]);
const auto psrc = psrc_val->get_logical_tensor();
const auto dst = op->get_output_value(0)->get_logical_tensor();
// check if can use post-sum, otherwise use binary post ops
// algorithm should be binary_add
bool is_post_sum = alg == dnnl::algorithm::binary_add;
// base_op should not be eltwise, pool, or softmax.
is_post_sum = is_post_sum
&& !impl::utils::one_of(op->get_kind(),
op_kind::dnnl_eltwise, op_kind::dnnl_pool,
op_kind::dnnl_softmax, op_kind::dnnl_logsoftmax);
// only support one post-sum
is_post_sum = is_post_sum
&& !(op->has_attr(op_attr::with_sum)
&& op->get_attr<bool>(op_attr::with_sum));
// post src and dst should have the same shape
is_post_sum = is_post_sum
&& logical_tensor_wrapper_t(dst).vdims()
== logical_tensor_wrapper_t(psrc).vdims();
// sum post-op cannot be a part of post-op chain in dw post-op case
is_post_sum = is_post_sum && !fusion_info.has_post_dw_conv();
// dst should have equal or larger memory size than post src
is_post_sum = is_post_sum
&& (psrc.data_type == dst.data_type
|| impl::utils::one_of(psrc.data_type,
impl::data_type::u8, impl::data_type::s8));
// post src should not have alias. Here the condition of alias_ins == 1
// is to disable the inplace option for src = main_op(src) + src
const auto get_external_id
= [](const std::shared_ptr<value_t> &val) {
auto tmp_val = val;
while (tmp_val->has_producer()) {
size_t lt_id = tmp_val->get_logical_tensor().id;
// check if lt_id is already a external id
if (lt_id != std::numeric_limits<size_t>::max())
return lt_id;
const op_t &prod_op = tmp_val->get_producer();
// ops like Dnnl_constant_scales doesn't have external input
// return a internal id
if (prod_op.num_inputs() == 0) return lt_id;
tmp_val = prod_op.get_input_value(0);
}
return tmp_val->get_logical_tensor().id;
};
size_t alias_ins = 0;
size_t psrc_lt_id = get_external_id(psrc_val);
for (size_t op_in_idx = 0; op_in_idx < op->num_inputs();
++op_in_idx) {
size_t op_in_lt_id
= get_external_id(op->get_input_value(op_in_idx));
if (op_in_lt_id == psrc_lt_id) alias_ins++;
}
is_post_sum = is_post_sum && alias_ins == 1;
if (is_post_sum) {
pop->set_post_sum();
op->set_attr<bool>(op_attr::with_sum, true);
dnnl::memory::data_type sum_dt = dnnl::memory::data_type::undef;
if (psrc.data_type == impl::data_type::s8
&& dst.data_type == impl::data_type::u8) {
sum_dt = dnnl::memory::data_type::s8;
}
dnnl_pops.append_sum(scale, zp, sum_dt);
} else {
// post-binary
assertm(extra_inputs.size() == 1,
"post-binary only has 1 extra input");
assertm(scale == 1.f && zp == 0,
"post-binary doesn't support input scale and zp");
auto md = make_dnnl_memory_desc(psrc);
if (op->get_kind() == op_kind::dnnl_convolution)
md = to_format_any(md);
dnnl_pops.append_binary(alg, md);
}
} else if (fused_op_kind == op_kind::dnnl_convolution) {
const auto &extra_input_indices = pop->get_unfused_input_indices();
auto get_dnn_dt = [](const std::shared_ptr<value_t> &val) {
using ltw = logical_tensor_wrapper_t;
auto graph_dt = ltw(val->get_logical_tensor()).data_type();
return static_cast<dnnl::memory::data_type>(graph_dt);
};
const size_t wei_idx = extra_input_indices[0];
auto wei_value = op->get_input_value(wei_idx);
const auto wei_dt = get_dnn_dt(wei_value);
const auto dst_dt = get_dnn_dt(op->get_output_value(0));
const auto bia_dt = dnnl::memory::data_type::undef;
const int64_t ks = wei_value->get_logical_tensor().dims[3];
const int64_t stride = fused_op->get_attr<std::vector<int64_t>>(
op_attr::strides)[0];
const int64_t pad_l = fused_op->get_attr<std::vector<int64_t>>(
op_attr::pads_begin)[0];
if (extra_input_indices.size() > 1) {
const size_t bias_idx = extra_input_indices[1];
auto bias_value = op->get_input_value(bias_idx);
const auto bia_dt = get_dnn_dt(bias_value);
dnnl_pops.append_dw(wei_dt, bia_dt, dst_dt, ks, stride, pad_l);
} else {
dnnl_pops.append_dw(wei_dt, bia_dt, dst_dt, ks, stride, pad_l);
}
} else {
// not reachable
}
}
attr.set_post_ops(std::move(dnnl_pops));
return attr;
}
} // namespace dnnl_impl
} // namespace graph
} // namespace impl
} // namespace dnnl