-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathdnnl_shape_infer.cpp
608 lines (516 loc) · 23.1 KB
/
dnnl_shape_infer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/*******************************************************************************
* Copyright 2021-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include "graph/interface/shape_infer.hpp"
#include "oneapi/dnnl/dnnl.hpp"
#include <unordered_set>
#include "graph/backend/dnnl/dnnl_shape_infer.hpp"
#include "graph/backend/dnnl/internal_attrs.hpp"
#define VCHECK_INVALID_SHAPE(cond, msg, ...) \
VCONDCHECK(graph, create, check, compile, (cond), status::invalid_shape, \
msg, ##__VA_ARGS__);
namespace dnnl {
namespace impl {
namespace graph {
namespace dnnl_impl {
static status_t infer_dnnl_conv_common_bwd_weight_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs,
const size_t axis_with_groups) {
bool canonicalized = n->has_attr(op_attr::canonicalized)
&& n->get_attr<bool>(op_attr::canonicalized);
const auto groups = n->get_attr<int64_t>(op_attr::groups);
auto out = logical_tensor_wrapper_t(outputs[0]); // diff_wei
if (canonicalized && groups > 1 && !out.is_shape_unknown()) {
// convert the out shape to uncanonicalized form to reuse the frontend
// shape infer function.
auto out_dims = out.vdims();
auto groups = out_dims[0];
out_dims.erase(out_dims.begin());
out_dims[axis_with_groups] *= groups;
set_shape_and_strides(*outputs[0], out_dims);
}
// infer pad and filter shape (groups not included)
const auto ret = infer_conv_bprop_filters_output_shape(n, inputs, outputs);
if (ret != status::success) return ret;
// add groups into weights shape
if (canonicalized && groups > 1) {
auto out_dims = logical_tensor_wrapper_t(outputs[0]).vdims();
out_dims[axis_with_groups] /= groups;
out_dims.insert(out_dims.begin(), groups);
set_shape_and_strides(*outputs[0], out_dims);
}
return status::success;
}
status_t infer_dnnl_conv_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
auto out = logical_tensor_wrapper_t(outputs[0]);
const bool org_out_shape_unknown = out.is_shape_unknown();
auto backup_wei_shape = *inputs[1];
auto backup_groups = n->get_attr<int64_t>(op_attr::groups);
if (n->has_attr(op_attr::canonicalized)
&& n->get_attr<bool>(op_attr::canonicalized)
&& (ltw(inputs[1]).ndims() == ltw(inputs[0]).ndims() + 1)) {
auto ndims = ltw(inputs[1]).ndims() - 1;
auto dims = ltw(inputs[1]).vdims();
n->set_attr<int64_t>(op_attr::groups, static_cast<int64_t>(dims[0]));
dims[1] *= dims[0];
dims.erase(dims.begin());
inputs[1]->ndims = ndims;
for (size_t i = 0; i < static_cast<size_t>(ndims); i++) {
inputs[1]->dims[i] = dims[i];
}
}
infer_conv_output_shape(n, inputs, outputs);
*inputs[1] = backup_wei_shape;
n->set_attr<int64_t>(op_attr::groups, backup_groups);
// The following code will take effect only when fusing dw conv.
// At this stage outputs[0] corresponds to conv_1x1 dst
// we now just need to adjust oh and ow in case of dw_k3s2p1 post-op
dims output_dims(logical_tensor_wrapper_t(outputs[0]).vdims());
if (org_out_shape_unknown && n->has_attr(op_attr::dw_type)
&& n->get_attr<std::string>(op_attr::dw_type) == "k3s2p1") {
const std::string src_fmt
= n->get_attr<std::string>(op_attr::data_format);
const size_t oh_offset
= (src_fmt == "NCX") ? output_dims.size() - 2 : 1;
const size_t ow_offset
= (src_fmt == "NCX") ? output_dims.size() - 1 : 2;
const dim_t stride = 2;
const dim_t new_oh = static_cast<dim_t>(
std::ceil(output_dims[oh_offset] / stride));
const dim_t new_ow = static_cast<dim_t>(
std::ceil(output_dims[ow_offset] / stride));
output_dims[oh_offset] = new_oh;
output_dims[ow_offset] = new_ow;
set_shape_and_strides(*outputs[0], output_dims);
}
return status::success;
}
status_t infer_dnnl_convtranspose_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
auto backup = *inputs[1];
auto backup_groups = n->get_attr<int64_t>(op_attr::groups);
bool is_canonicalized = n->has_attr(op_attr::canonicalized)
&& n->get_attr<bool>(op_attr::canonicalized);
if (is_canonicalized
&& (ltw(inputs[1]).ndims() == ltw(inputs[0]).ndims() + 1)) {
// [g, O/g, I/g, H, W]
auto ndims = ltw(inputs[1]).ndims() - 1;
auto dims = ltw(inputs[1]).vdims();
n->set_attr<int64_t>(op_attr::groups, static_cast<int64_t>(dims[0]));
dims[2] *= dims[0];
dims.erase(dims.begin());
inputs[1]->ndims = ndims;
for (size_t i = 0; i < static_cast<size_t>(ndims); i++) {
inputs[1]->dims[i] = dims[i];
}
}
infer_convtranspose_output_shape(n, inputs, outputs);
*inputs[1] = backup;
n->set_attr<int64_t>(op_attr::groups, backup_groups);
return status::success;
}
status_t infer_dnnl_convtranspose_bwd_data_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
auto backup_wei_shape = *inputs[1];
auto backup_groups = n->get_attr<int64_t>(op_attr::groups);
if (n->has_attr(op_attr::canonicalized)
&& n->get_attr<bool>(op_attr::canonicalized)
&& (ltw(inputs[1]).ndims() == ltw(inputs[0]).ndims() + 1)) {
auto ndims = ltw(inputs[1]).ndims() - 1;
auto dims = ltw(inputs[1]).vdims();
n->set_attr<int64_t>(op_attr::groups, static_cast<int64_t>(dims[0]));
dims[2] *= dims[0];
dims.erase(dims.begin());
inputs[1]->ndims = ndims;
for (size_t i = 0; i < static_cast<size_t>(ndims); i++) {
inputs[1]->dims[i] = dims[i];
}
}
infer_convtranspose_bprop_data_output_shape(n, inputs, outputs);
*inputs[1] = backup_wei_shape;
n->set_attr<int64_t>(op_attr::groups, backup_groups);
return status::success;
}
status_t infer_dnnl_convtranspose_bwd_weight_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
const size_t axis_with_groups = 1;
return infer_dnnl_conv_common_bwd_weight_output_shape(
n, inputs, outputs, axis_with_groups);
}
status_t infer_dnnl_pool_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
infer_pool_output_shape(n, inputs, outputs);
return status::success;
}
status_t infer_permute_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
auto out0 = ltw(outputs[0]);
auto in_dims = ltw(inputs[0]).vdims();
auto perm = n->get_attr<std::vector<int64_t>>(op_attr::permutation);
std::vector<dim_t> inferred_out_dims(perm.size(), DNNL_GRAPH_UNKNOWN_DIM);
for (size_t i = 0; i < perm.size(); i++) {
inferred_out_dims[perm[i]] = in_dims[i];
}
// check the given shape
if (!out0.is_shape_unknown()) {
VCHECK_INVALID_SHAPE(validate(inferred_out_dims, out0.vdims()),
"%s, inferred out shape and output shape are not compatible",
op_t::kind2str(n->get_kind()).c_str());
}
set_shape_and_strides(*outputs[0], inferred_out_dims);
return status::success;
}
status_t infer_to_group_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
auto out0 = logical_tensor_wrapper_t(outputs[0]);
auto in0 = logical_tensor_wrapper_t(inputs[0]);
if (!out0.is_shape_unknown()) return status::success;
auto groups = n->get_attr<int64_t>(op_attr::groups);
dims in_dims = in0.vdims();
if (n->has_attr(op_attr::is_convtranspose)
&& n->get_attr<bool>(op_attr::is_convtranspose)) {
in_dims[1] /= groups;
} else {
in_dims[0] /= groups;
}
in_dims.insert(in_dims.begin(), groups);
// We should compute output dense strides instead of
// directly copying input strides to it
set_shape_and_strides(*outputs[0], in_dims);
UNUSED(n);
return status::success;
}
status_t infer_from_group_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
auto out = logical_tensor_wrapper_t(outputs[0]);
if (!out.is_shape_unknown()) return status::success;
const auto groups = n->get_attr<int64_t>(op_attr::groups);
dims inferred_out_dims = logical_tensor_wrapper_t(inputs[0]).vdims();
inferred_out_dims.erase(inferred_out_dims.begin());
if (n->has_attr(op_attr::is_convtranspose)
&& n->get_attr<bool>(op_attr::is_convtranspose)) {
inferred_out_dims[1] *= groups;
} else {
inferred_out_dims[0] *= groups;
}
set_shape_and_strides(*outputs[0], inferred_out_dims);
return status::success;
}
status_t infer_unsqueeze_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
if (!ltw(outputs[0]).is_shape_unknown()) return status::success;
auto axes = (n->has_attr(op_attr::axes))
? n->get_attr<std::vector<int64_t>>(op_attr::axes)
: std::vector<int64_t>();
const auto in_dims = ltw(inputs[0]).vdims();
const auto out_ndim = static_cast<int64_t>(in_dims.size() + axes.size());
if (std::any_of(axes.begin(), axes.end(), [&out_ndim](int64_t axis) {
return axis < -out_ndim || axis >= out_ndim;
}))
return status::unimplemented;
// convert negative axis to positive one
std::transform(axes.begin(), axes.end(), axes.begin(),
[&out_ndim](int64_t axis) -> int64_t {
return axis < 0 ? out_ndim + axis : axis;
});
if (std::unordered_set<int64_t>(axes.begin(), axes.end()).size()
< axes.size())
return status::unimplemented;
std::vector<size_t> indices(out_ndim);
std::iota(indices.begin(), indices.end(), 0);
dims inferred_output_shape(out_ndim, 1);
size_t in_dims_idx = 0;
for (const auto i : indices) {
if (std::find(axes.begin(), axes.end(), i) == axes.end())
inferred_output_shape[i] = in_dims[in_dims_idx++];
}
set_shape_and_strides(*outputs[0], inferred_output_shape);
return status::success;
}
status_t infer_squeeze_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
if (!ltw(outputs[0]).is_shape_unknown()) return status::success;
auto in_dims = ltw(inputs[0]).vdims();
auto in_ndim = in_dims.size();
auto axes = n->get_attr<std::vector<int64_t>>(op_attr::axes);
// convert negative axis to positive one
std::transform(axes.begin(), axes.end(), axes.begin(),
[&in_ndim](int64_t axis) -> int64_t {
return axis < 0 ? axis + in_ndim : axis;
});
dims inferred_output_shape = {};
for (size_t i = 0; i < in_ndim; ++i) {
if (axes.empty() && in_dims[i] == 1) {
continue;
} else if (!axes.empty()
&& std::find(axes.begin(), axes.end(), i) != axes.end()) {
if (in_dims[i] != 1) {
// Dimension must be 1
return status::invalid_arguments;
}
} else {
inferred_output_shape.push_back(in_dims[i]);
}
}
set_shape_and_strides(*outputs[0], inferred_output_shape);
return status::success;
}
status_t infer_bn_folding_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
auto out0 = logical_tensor_wrapper_t(outputs[0]);
auto out1 = logical_tensor_wrapper_t(outputs[1]);
auto in0 = logical_tensor_wrapper_t(inputs[0]);
auto in1 = logical_tensor_wrapper_t(inputs[1]);
if (!out0.is_shape_unknown() && !out1.is_shape_unknown())
return status::success;
// check if partial set shape aligns with inferred shape
if (out0.ndims() != -1) {
VCHECK_INVALID_SHAPE(validate(in0.vdims(), out0.vdims()),
"%s, input and output shapes are not compatible",
op_t::kind2str(n->get_kind()).c_str());
}
if (out1.ndims() != -1) {
VCHECK_INVALID_SHAPE(validate(in1.vdims(), out1.vdims()),
"%s, input and output shapes are not compatible",
op_t::kind2str(n->get_kind()).c_str());
}
// We should compute output dense strides instead of
// directly copying input strides to it
set_shape_and_strides(*outputs[0], in0.vdims());
set_shape_and_strides(*outputs[1], in1.vdims());
UNUSED(n);
return status::success;
}
status_t infer_dnnl_conv_bwd_data_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
using ltw = logical_tensor_wrapper_t;
auto backup = *inputs[1];
if (n->get_attr<int64_t>(op_attr::groups) > 1) {
auto ndims = ltw(inputs[1]).ndims() - 1;
auto dims = ltw(inputs[1]).vdims();
dims[1] *= dims[0];
dims.erase(dims.begin());
inputs[1]->ndims = ndims;
for (size_t i = 0; i < static_cast<size_t>(ndims); i++) {
inputs[1]->dims[i] = dims[i];
}
}
auto ret = infer_conv_bprop_data_output_shape(n, inputs, outputs);
if (ret != status::success) return ret;
*inputs[1] = backup;
return status::success;
}
status_t infer_dnnl_conv_bwd_weight_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
const size_t axis_with_groups = 0;
return infer_dnnl_conv_common_bwd_weight_output_shape(
n, inputs, outputs, axis_with_groups);
}
status_t infer_dnnl_batchnorm_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
status_t stat = status::success;
if (n->get_attr<bool>(op_attr::is_training))
stat = infer_bn_fwd_train_output_shape(n, inputs, outputs);
else
stat = infer_identity_output_shape(n, inputs, outputs);
return stat;
}
status_t infer_dnnl_batchnorm_bwd_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
// skip shape inference for scratchpad output
// FIXME(wuxun): may remove this temporary solution after we refine op
// definition to handle one or more optional input/outputs
auto new_outputs = outputs;
new_outputs.pop_back();
infer_bn_bwd_output_shape(n, inputs, new_outputs);
return status::success;
}
status_t infer_dnnl_constant_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
// `dnnl_constant_[scales|zps]` op doesn't have any inputs
auto out_shape = n->get_attr<std::vector<int64_t>>(op_attr::shape);
set_shape_and_strides(*outputs[0], out_shape);
return status::success;
}
status_t infer_dnnl_pool_bwd_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
auto diff_src_shape = n->get_attr<std::vector<int64_t>>(op_attr::src_shape);
set_shape_and_strides(*outputs[0], diff_src_shape);
// get attr value
const dims &strides = n->get_attr<dims>(op_attr::strides);
const dims &kernel = n->get_attr<dims>(op_attr::kernel);
const dims &pads_begin = n->get_attr<dims>(op_attr::pads_begin);
const dims &pads_end = n->get_attr<dims>(op_attr::pads_end);
std::string src_format = n->get_attr<std::string>(op_attr::data_format);
dims dilations(kernel.size(), 1);
if (n->has_attr(op_attr::dilations)) {
dilations = n->get_attr<dims>(op_attr::dilations);
if (dilations.size() != kernel.size()) {
return status::invalid_arguments;
}
}
logical_tensor_wrapper_t diff_src_ltw(outputs[0]);
dims src_sp = diff_src_ltw.get_src_spatial_dims(src_format);
// if paddings are empty vectors?
dims new_pads_begin(pads_begin);
if (new_pads_begin.empty()) { new_pads_begin.assign(src_sp.size(), 0); }
dims new_pads_end(pads_end);
if (new_pads_end.empty()) { new_pads_end.assign(src_sp.size(), 0); }
if (n->has_attr(op_attr::auto_pad)
&& n->get_attr<std::string>(op_attr::auto_pad) != "None") {
std::string auto_pad = n->get_attr<std::string>(op_attr::auto_pad);
// infer auto_pad
for (size_t i = 0; i < src_sp.size(); ++i) {
auto ret = infer_auto_pad(src_sp[i], strides[i], kernel[i],
dilations[i], auto_pad, new_pads_begin[i], new_pads_end[i]);
if (ret != status::success) return ret;
}
n->set_attr(op_attr::pads_begin, new_pads_begin);
n->set_attr(op_attr::pads_end, new_pads_end);
}
return status::success;
}
status_t infer_binary_select_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
auto in0 = logical_tensor_wrapper_t(inputs[0]);
auto in1 = logical_tensor_wrapper_t(inputs[1]);
auto in2 = logical_tensor_wrapper_t(inputs[2]);
const bool shapes_should_match = n->has_attr(op_attr::auto_broadcast)
? "none" == n->get_attr<std::string>(op_attr::auto_broadcast)
: false;
dims input0_dims = in0.vdims();
dims input1_dims = in1.vdims();
dims input2_dims = in2.vdims();
dims inferred_out_shape;
if (shapes_should_match) { // no broadcast
VCHECK_INVALID_SHAPE(
(input0_dims == input1_dims && input1_dims == input2_dims),
"%s, all input dims should match each other if there is no "
"broadcast. input0 dims: %s, input1 dims: %s, input2 dims: %s ",
op_t::kind2str(n->get_kind()).c_str(),
dims2str(input0_dims).c_str(), dims2str(input1_dims).c_str(),
dims2str(input2_dims).c_str());
inferred_out_shape = std::move(input0_dims);
} else { // can broadcast
status_t ret1 = broadcast(input0_dims, input1_dims, inferred_out_shape);
VCHECK_INVALID_SHAPE((ret1 == status::success),
"%s, failed to implement numpy broadcasting",
op_t::kind2str(n->get_kind()).c_str());
}
auto out0 = logical_tensor_wrapper_t(outputs[0]);
// check if given or partial set shape aligns with inferred shape
if (!out0.is_shape_unknown() || out0.ndims() != -1) {
VCHECK_INVALID_SHAPE(validate(inferred_out_shape, out0.vdims()),
"%s, inferred out shape and output shape are not compatible",
op_t::kind2str(n->get_kind()).c_str());
if (!out0.is_shape_unknown()) return status::success;
}
set_shape_and_strides(*outputs[0], inferred_out_shape);
return status::success;
}
status_t infer_dnnl_binary_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
const bool is_bias_add = n->has_attr(op_attr::is_bias_add)
&& n->get_attr<bool>(op_attr::is_bias_add);
const algorithm algo = static_cast<dnnl::algorithm>(
n->get_attr<int64_t>(op_attr::alg_kind));
if (algo == algorithm::binary_select) {
return infer_binary_select_output_shape(n, inputs, outputs);
} else if (is_bias_add) {
return infer_bias_add_output_shape(n, inputs, outputs);
} else {
return infer_elemwise_arithmetic_output_shape(n, inputs, outputs);
}
}
status_t infer_dnnl_sdpa_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs) {
// [batch_size, num_heads_q, seq_len_q, head_size_qk]
auto query = logical_tensor_wrapper_t(inputs[0]);
// [batch_size, num_heads_q, head_size_qk, seq_len_kv,]
auto key = logical_tensor_wrapper_t(inputs[1]);
// [batch_size, num_heads_v, seq_len_kv, head_size_v]
auto value = logical_tensor_wrapper_t(inputs[2]);
// [batch_size, num_heads_q, seq_len_q, head_size_v]
auto out0 = logical_tensor_wrapper_t(outputs[0]);
dims query_dims = query.vdims();
dims key_dims = key.vdims();
dims value_dims = value.vdims();
VCHECK_INVALID_SHAPE((query_dims.size() == key_dims.size()
&& key_dims.size() == value_dims.size()),
"%s, all input dims should match each other. input0 dims: %s, "
"input1 dims: %s, input2 dims: %s ",
op_t::kind2str(n->get_kind()).c_str(), dims2str(query_dims).c_str(),
dims2str(key_dims).c_str(), dims2str(value_dims).c_str());
VCHECK_INVALID_SHAPE((query_dims.size() == 4),
"%s, only support 4D input for all q/k/v. input0 dimension: %s, "
"input1 dimension: %s, input2 dimension: %s ",
op_t::kind2str(n->get_kind()).c_str(),
std::to_string(query_dims.size()).c_str(),
std::to_string(key_dims.size()).c_str(),
std::to_string(value_dims.size()).c_str());
VCHECK_INVALID_SHAPE((query_dims[3] == key_dims[2]),
"%s, query head size should be match with key head size. query "
"dims: %s, Key dims: %s",
op_t::kind2str(n->get_kind()).c_str(), dims2str(query_dims).c_str(),
dims2str(key_dims).c_str());
VCHECK_INVALID_SHAPE((key_dims[3] == value_dims[2]),
"%s, key sequence length should be match with value sequence "
"length. key dims: %s, value dims: %s ",
op_t::kind2str(n->get_kind()).c_str(), dims2str(key_dims).c_str(),
dims2str(value_dims).c_str());
dims inferred_output_shape;
inferred_output_shape
= {query_dims[0], query_dims[1], query_dims[2], value_dims[3]};
if (out0.ndims() != -1) {
VCHECK_INVALID_SHAPE(validate(inferred_output_shape, out0.vdims()),
"%s, inferred out shape and output shape are not compatible",
op_t::kind2str(n->get_kind()).c_str());
}
set_shape_and_strides(*outputs[0], inferred_output_shape);
return status::success;
}
} // namespace dnnl_impl
} // namespace graph
} // namespace impl
} // namespace dnnl