-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathdnnl_shape_infer.hpp
119 lines (92 loc) · 4.14 KB
/
dnnl_shape_infer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*******************************************************************************
* Copyright 2021-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef GRAPH_BACKEND_DNNL_DNNL_SHAPE_INFER_HPP
#define GRAPH_BACKEND_DNNL_DNNL_SHAPE_INFER_HPP
#include <string>
#include <utility>
#include <vector>
#include "graph/interface/logical_tensor.hpp"
#include "graph/interface/op.hpp"
#include "common/verbose.hpp"
namespace dnnl {
namespace impl {
namespace graph {
namespace dnnl_impl {
status_t infer_dnnl_conv_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_convtranspose_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_convtranspose_bwd_data_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_convtranspose_bwd_weight_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_pool_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_permute_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_to_group_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_from_group_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_unsqueeze_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_bn_folding_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_conv_bwd_data_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_conv_bwd_weight_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_squeeze_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_batchnorm_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_batchnorm_bwd_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_constant_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_pool_bwd_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_binary_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_binary_select_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
status_t infer_dnnl_sdpa_output_shape(op_t *n,
std::vector<logical_tensor_t *> &inputs,
std::vector<logical_tensor_t *> &outputs);
} // namespace dnnl_impl
} // namespace graph
} // namespace impl
} // namespace dnnl
#endif