-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathsdp_primitive.cpp
343 lines (282 loc) · 13.1 KB
/
sdp_primitive.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/*******************************************************************************
* Copyright 2024-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "graph/backend/dnnl/kernels/sdp_primitive.hpp"
#include "common/sdpa_pd.hpp"
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL
#include "gpu/intel/ocl/stream.hpp"
#elif DNNL_GPU_RUNTIME == DNNL_RUNTIME_SYCL
#include "gpu/intel/sycl/stream.hpp"
#endif
#include "graph/backend/dnnl/passes/compile_ops.hpp"
#include "graph/backend/dnnl/passes/constant_propagation.hpp"
#include "graph/backend/dnnl/passes/insert_ops.hpp"
#include "graph/backend/dnnl/passes/layout_propagation.hpp"
#include "graph/backend/dnnl/passes/lower.hpp"
#include "graph/backend/dnnl/passes/memory_planning.hpp"
#include "graph/backend/dnnl/passes/transform.hpp"
#include "graph/backend/dnnl/passes/utils.hpp"
#include "graph/backend/dnnl/op_executable.hpp"
namespace dnnl {
namespace impl {
namespace graph {
namespace dnnl_impl {
template <bool quantized>
status_t sdp_primitive_kernel_t<quantized>::compile_impl(
const dnnl_partition_impl_t *part, const engine_t *g_engine,
const std::vector<logical_tensor_t> &inputs,
const std::vector<logical_tensor_t> &outputs) {
// sdp_primitive_kernel_t only supports Intel GPU.
#if defined(DNNL_WITH_SYCL) && DNNL_GPU_VENDOR != DNNL_VENDOR_INTEL
return status::unimplemented;
#endif
p_engine_ = make_dnnl_engine(*g_engine);
g_alloc_
= reinterpret_cast<graph::allocator_t *>(g_engine->get_allocator());
// First, dry run on a deep copy
subgraph_
= std::make_shared<subgraph_t>(graph_t::deep_copy(part->get_ops()),
p_engine_, part->get_fpmath_mode(), false, true);
CHECK(set_given_inputs_outputs(subgraph_, inputs, outputs));
CHECK(cfg_.initial_check(subgraph_, inputs));
subgraph_visualizer_t vis(part->id(), [this](const value_t *val) {
return this->memory_planner_.get_memory_info(val);
});
pass_pipeline_t pipeline = pass_pipeline_t(vis);
BACKEND_DNNL_ADD_PASS(pipeline, lower_down);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_implicit_causal_mask);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_reshape_for_gqa);
if (quantized) {
BACKEND_DNNL_ADD_PASS(pipeline, lift_up_typecast);
BACKEND_DNNL_ADD_PASS(pipeline, lift_up_quantize);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_typecast_to_matmul_or_conv);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_post_typecast_to_predecessor);
BACKEND_DNNL_ADD_PASS(pipeline, convert_to_runtime_src_scales);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_src_scales);
BACKEND_DNNL_ADD_PASS(pipeline, convert_to_runtime_src_zero_points);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_src_zero_points);
BACKEND_DNNL_ADD_PASS(pipeline, insert_runtime_u8_to_s8_for_matmul);
BACKEND_DNNL_ADD_PASS(pipeline, convert_to_runtime_dst_scales);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_dst_scales);
BACKEND_DNNL_ADD_PASS(pipeline, convert_to_runtime_dst_zero_points);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_dst_zero_points);
}
BACKEND_DNNL_ADD_PASS(pipeline, binary_canonicalization);
BACKEND_DNNL_ADD_PASS(pipeline, insert_permute_for_matmul);
if (quantized) {
BACKEND_DNNL_ADD_PASS(pipeline, remove_quant_data_with_no_effect);
}
pipeline.reset_visualize_arg(true, false);
BACKEND_DNNL_ADD_PASS(pipeline, infer_shape);
BACKEND_DNNL_ADD_PASS(pipeline, fuse_dst_transpose_to_predecessor);
BACKEND_DNNL_ADD_PASS(pipeline, layout_propagation);
// bind the memory for each op
auto memory_plan = [&](std::shared_ptr<subgraph_t> &sg) {
return memory_planner_.run(sg);
};
pipeline.reset_visualize_arg(true, true);
BACKEND_DNNL_ADD_PASS(pipeline, memory_plan);
auto modify_subgraph = [&] {
// Run the added passes
CHECK(pipeline.run(subgraph_));
// fill information for inputs logical tensors
for (size_t i = 0; i < inputs.size(); i++) {
auto &in = const_cast<logical_tensor_t &>(inputs[i]);
in = subgraph_->ins_[i];
}
// fill information for outputs logical tensors
for (size_t i = 0; i < outputs.size(); i++) {
auto &out = const_cast<logical_tensor_t &>(outputs[i]);
out = subgraph_->outs_[i];
}
return status::success;
};
resource_ctor_ = [this]() {
return this->memory_planner_.get_exec_args_set().clone();
};
CHECK(modify_subgraph());
cfg_.quantized_ = quantized;
CHECK(cfg_.init(subgraph_, p_engine_, inputs, outputs));
return status::success;
}
template <bool quantized>
void sdp_primitive_kernel_t<quantized>::prepare_args_set(
const execution_args_set_t *res, const std::vector<tensor_t> &inputs,
const std::vector<tensor_t> &outputs, const scratchpad_t &scratchpad) {
// update the data of partition in/outputs args
for (const auto &mem_idx : res->get_mems_use_external_inputs()) {
mem_idx.first.set_data_handle(inputs[mem_idx.second].get_data_handle());
}
for (const auto &mem_idx : res->get_mems_use_external_outputs()) {
mem_idx.first.set_data_handle(
outputs[mem_idx.second].get_data_handle());
}
}
template <bool quantized>
status_t sdp_primitive_kernel_t<quantized>::get_prim_exec_args(
exec_args_t &args, memory (&mem_storage)[10],
const execution_args_set_t *res) const {
bool ok = res->find_value_mem_map(cfg_.q_.get(), mem_storage[0])
&& res->find_value_mem_map(cfg_.k_.get(), mem_storage[1])
&& res->find_value_mem_map(cfg_.v_.get(), mem_storage[2])
&& res->find_value_mem_map(cfg_.dst_.get(), mem_storage[3]);
if (cfg_.scale_)
ok = ok && res->find_value_mem_map(cfg_.scale_.get(), mem_storage[4]);
if (cfg_.attn_mask_)
ok = ok
&& res->find_value_mem_map(
cfg_.attn_mask_.get(), mem_storage[5]);
if (quantized && !(cfg_.k_scale_ || cfg_.v_scale_))
return status::invalid_arguments;
if (cfg_.k_scale_)
ok = ok && res->find_value_mem_map(cfg_.k_scale_.get(), mem_storage[6]);
if (cfg_.v_scale_)
ok = ok && res->find_value_mem_map(cfg_.v_scale_.get(), mem_storage[7]);
if (cfg_.k_zero_points_)
ok = ok
&& res->find_value_mem_map(
cfg_.k_zero_points_.get(), mem_storage[8]);
if (cfg_.v_zero_points_)
ok = ok
&& res->find_value_mem_map(
cfg_.v_zero_points_.get(), mem_storage[9]);
VCONDCHECK(graph, exec, check, sdp_primitive_kernel, ok,
status::runtime_error,
"sdp_primitive_kernel get_prim_exec_args failed");
memory_arg_t mem_arg_q = {mem_storage[0].get(), true};
memory_arg_t mem_arg_k = {mem_storage[1].get(), true};
memory_arg_t mem_arg_v = {mem_storage[2].get(), true};
memory_arg_t mem_arg_dst = {mem_storage[3].get(), false};
memory_arg_t mem_arg_scale = {mem_storage[4].get(true), true};
memory_arg_t mem_arg_mask = {mem_storage[5].get(true), true};
memory_arg_t mem_arg_k_scale = {mem_storage[6].get(true), true};
memory_arg_t mem_arg_v_scale = {mem_storage[7].get(true), true};
memory_arg_t mem_arg_k_zero_points = {mem_storage[8].get(true), true};
memory_arg_t mem_arg_v_zero_points = {mem_storage[9].get(true), true};
args.clear();
args[DNNL_ARG_QUERIES] = mem_arg_q;
args[DNNL_ARG_KEYS] = mem_arg_k;
args[DNNL_ARG_VALUES] = mem_arg_v;
args[DNNL_ARG_DST] = mem_arg_dst;
args[DNNL_ARG_SCALE] = mem_arg_scale;
args[DNNL_ARG_ATTN_MASK] = mem_arg_mask;
args[DNNL_ARG_ATTR_SCALES | DNNL_ARG_KEYS] = mem_arg_k_scale;
args[DNNL_ARG_ATTR_SCALES | DNNL_ARG_VALUES] = mem_arg_v_scale;
args[DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_KEYS] = mem_arg_k_zero_points;
args[DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_VALUES] = mem_arg_v_zero_points;
return status::success;
}
template <bool quantized>
status_t sdp_primitive_kernel_t<quantized>::execute_impl(
const stream_t *g_stream, const std::vector<tensor_t> &inputs,
const std::vector<tensor_t> &outputs) {
dnnl::stream p_stream = make_dnnl_stream(p_engine_, *g_stream);
thread_local_cache_t<execution_args_set_t> res_cache;
execution_args_set_t *res = res_cache.get_or_add(
reinterpret_cast<size_t>(this), resource_ctor_);
// Micro kernel doesn't use scratchpad memory, here we force-set size as
// zero to avoid redundant memory allocation and deallocation.
temporary_scratchpad_t scratchpad(0, p_engine_, *g_alloc_);
prepare_args_set(res, inputs, outputs, scratchpad);
memory mem_storage[10];
exec_args_t args;
CHECK(get_prim_exec_args(args, mem_storage, res));
exec_ctx_t ctx(p_stream.get(), std::move(args));
return cfg_.sdpa_prim_->execute(ctx);
}
#ifdef DNNL_WITH_SYCL
template <bool quantized>
status_t sdp_primitive_kernel_t<quantized>::sycl_execute_impl(
const stream_t *g_stream, const std::vector<tensor_t> &inputs,
const std::vector<tensor_t> &outputs,
const std::vector<::sycl::event> &sycl_deps,
::sycl::event *sycl_event) {
// sdp_primitive_kernel_t only supports Intel GPU.
#if DNNL_GPU_VENDOR != DNNL_VENDOR_INTEL
return status::unimplemented;
#endif
dnnl::stream p_stream = make_dnnl_stream(p_engine_, *g_stream);
thread_local_cache_t<execution_args_set_t> res_cache;
execution_args_set_t *res = res_cache.get_or_add(
reinterpret_cast<size_t>(this), resource_ctor_);
// Micro kernel doesn't use scratchpad memory, here we force-set size as
// zero to avoid redundant memory allocation and deallocation.
temporary_scratchpad_t scratchpad(0, p_engine_, *g_alloc_);
prepare_args_set(res, inputs, outputs, scratchpad);
memory mem_storage[10];
exec_args_t args;
CHECK(get_prim_exec_args(args, mem_storage, res));
exec_ctx_t ctx(p_stream.get(), std::move(args));
// Relying on the library's internals here. Since graph API is currently
// enabled only for the Intel vendor it is fine to cast stream to
// gpu::intel::sycl::stream_t unconditionally.
auto *sycl_stream = dnnl::impl::utils::downcast<
dnnl::impl::gpu::intel::sycl::stream_t *>(p_stream.get());
sycl_stream->before_exec_hook();
if (!sycl_deps.empty()) sycl_stream->sycl_ctx().set_deps(sycl_deps);
auto status = cfg_.sdpa_prim_->execute(ctx);
auto return_event = sycl_stream->get_output_event();
scratchpad.set_deps(return_event);
if (sycl_event) *sycl_event = return_event;
sycl_stream->after_exec_hook();
return status;
}
#endif
#if DNNL_GPU_RUNTIME == DNNL_RUNTIME_OCL
template <bool quantized>
status_t sdp_primitive_kernel_t<quantized>::ocl_execute_impl(
const stream_t *g_stream, const std::vector<tensor_t> &inputs,
const std::vector<tensor_t> &outputs,
const std::vector<cl_event> &cl_deps, cl_event *ret_event) {
dnnl::stream p_stream = make_dnnl_stream(p_engine_, *g_stream);
thread_local_cache_t<execution_args_set_t> res_cache;
execution_args_set_t *res = res_cache.get_or_add(
reinterpret_cast<size_t>(this), resource_ctor_);
// Micro kernel doesn't use scratchpad memory, here we force-set size as
// zero to avoid redundant memory allocation and deallocation.
temporary_scratchpad_t scratchpad(0, p_engine_, *g_alloc_);
prepare_args_set(res, inputs, outputs, scratchpad);
memory mem_storage[10];
exec_args_t args;
CHECK(get_prim_exec_args(args, mem_storage, res));
exec_ctx_t ctx(p_stream.get(), std::move(args));
// TODO (pc): refactor
auto *ocl_stream = dnnl::impl::utils::downcast<gpu::intel::ocl::stream_t *>(
p_stream.get());
ocl_stream->before_exec_hook();
if (!cl_deps.empty()) {
std::vector<xpu::ocl::wrapper_t<cl_event>> events(cl_deps.size());
for (size_t i = 0; i < cl_deps.size(); i++)
events[i] = xpu::ocl::wrapper_t<cl_event>(cl_deps[i], true);
ocl_stream->ocl_ctx().set_deps(events);
}
auto status = cfg_.sdpa_prim_->execute(ctx);
cl_event return_event = nullptr;
if ((ocl_stream->flags() & stream_flags::in_order) == 0) {
auto last = ocl_stream->get_output_event();
return_event = last.release();
}
scratchpad.set_deps(return_event);
if (ret_event) *ret_event = return_event;
ocl_stream->after_exec_hook();
return status;
}
#endif
template struct sdp_primitive_kernel_t<true>;
template struct sdp_primitive_kernel_t<false>;
} // namespace dnnl_impl
} // namespace graph
} // namespace impl
} // namespace dnnl