-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathref_matmul.cpp
237 lines (200 loc) · 9.13 KB
/
ref_matmul.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*******************************************************************************
* Copyright 2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "gpu/generic/sycl/ref_matmul.hpp"
#include "common/c_types_map.hpp"
#include "gpu/generic/sycl/matmul_kernels.hpp"
#include "gpu/generic/sycl/specialization_constants.hpp"
#include "xpu/sycl/types.hpp"
#define VCHECK_MATMUL(cond, msg, ...) \
VCONDCHECK(primitive, create, check, matmul, (cond), \
status::unimplemented, msg, ##__VA_ARGS__);
namespace dnnl {
namespace impl {
namespace gpu {
namespace generic {
namespace sycl {
status_t ref_matmul_t::pd_t::init_conf() {
conf_ = sycl_matmul_conf_t();
conf_.do_scale_data
= !attr()->scales_.get(DNNL_ARG_SRC_0).has_default_values();
conf_.do_scale_weights
= !attr()->scales_.get(DNNL_ARG_WEIGHTS).has_default_values();
conf_.do_scale_dst
= !attr()->scales_.get(DNNL_ARG_DST).has_default_values();
conf_.single_weights_scale
= attr()->scales_.get(DNNL_ARG_WEIGHTS).mask_ == 0;
conf_.use_data_zeropoints
= !attr()->zero_points_.has_default_values(DNNL_ARG_SRC_0);
conf_.use_weights_zeropoints
= !attr()->zero_points_.has_default_values(DNNL_ARG_WEIGHTS_0);
conf_.use_dst_zeropoints
= !attr()->zero_points_.has_default_values(DNNL_ARG_DST);
conf_.use_dropout = !attr()->dropout_.has_default_values();
conf_.post_ops = sycl_post_ops_t(attr(), dst_md());
memory_desc_wrapper src_d = src_md();
memory_desc_wrapper weights_d = weights_md();
memory_desc_wrapper dst_d = dst_md();
memory_desc_wrapper bias_d = weights_md(1);
VCHECK_MATMUL(!utils::one_of(true, src_d.has_runtime_dims(),
weights_d.has_runtime_dims(),
dst_d.has_runtime_dims(), bias_d.has_runtime_dims()),
VERBOSE_RUNTIMEDIM_UNSUPPORTED);
return init_rt_conf(conf_, data_md_t, dst_md_t, weights_md_t, src_d,
weights_d, dst_d, bias_d);
}
status_t ref_matmul_t::pd_t::init_rt_conf(sycl_matmul_conf_t &conf,
xpu::sycl::md_t_spec_const &data_md_t_,
xpu::sycl::md_t_spec_const &dst_md_t_,
xpu::sycl::md_t_spec_const &weights_md_t_,
const memory_desc_wrapper src_d, const memory_desc_wrapper weights_d,
const memory_desc_wrapper dst_d,
const memory_desc_wrapper bias_d) const {
// Lambda because this function will not be used anywhere else
auto init_md_t_sc_from_md = [=](xpu::sycl::md_t_spec_const &md_t_sc,
const memory_desc_t *md) -> status_t {
constexpr int max_dims = 6;
using dim32_t = int32_t;
memory_desc_wrapper mdw(md);
VCHECK_MATMUL(mdw.format_kind() == format_kind::blocked,
VERBOSE_UNSUPPORTED_FORMAT_KIND);
VCHECK_MATMUL(
mdw.ndims() <= max_dims, VERBOSE_BAD_NDIMS, mdw, mdw.ndims());
const auto &blk = mdw.blocking_desc();
md_t_sc.data_type_ = mdw.data_type();
#define CHECK_AND_ASSIGN(lhs, rhs) \
VCHECK_MATMUL((rhs) <= INT32_MAX, VERBOSE_BAD_PARAM, rhs); \
(lhs) = static_cast<dim32_t>(rhs)
CHECK_AND_ASSIGN(md_t_sc.ndims_, mdw.ndims());
CHECK_AND_ASSIGN(md_t_sc.offset0_, mdw.offset0());
CHECK_AND_ASSIGN(md_t_sc.inner_nblks_, blk.inner_nblks);
for (int d = 0; d < mdw.ndims(); d++) {
CHECK_AND_ASSIGN(md_t_sc.dims_[d], mdw.dims()[d]);
CHECK_AND_ASSIGN(md_t_sc.padded_dims_[d], mdw.padded_dims()[d]);
CHECK_AND_ASSIGN(
md_t_sc.padded_offsets_[d], mdw.padded_offsets()[d]);
CHECK_AND_ASSIGN(md_t_sc.strides_[d], blk.strides[d]);
CHECK_AND_ASSIGN(md_t_sc.inner_blks_[d], blk.inner_blks[d]);
CHECK_AND_ASSIGN(md_t_sc.inner_idxs_[d], blk.inner_idxs[d]);
}
#undef CHECK_AND_ASSIGN
return status::success;
};
int matmul_dim_1 = ndims() - 2;
int matmul_dim_2 = ndims() - 1;
memory_desc_t data_md_copy = *src_d.md_;
auto &data_strides = data_md_copy.format_desc.blocking.strides;
if (data_strides[matmul_dim_1] < data_strides[matmul_dim_2]) {
std::swap(data_strides[matmul_dim_1], data_strides[matmul_dim_2]);
std::swap(data_md_copy.dims[matmul_dim_1],
data_md_copy.dims[matmul_dim_2]);
conf.transpose_data = true;
}
init_md_t_sc_from_md(data_md_t_, &data_md_copy);
memory_desc_t weights_md_copy = *weights_d.md_;
auto &weights_strides = weights_md_copy.format_desc.blocking.strides;
if (weights_strides[matmul_dim_1] < weights_strides[matmul_dim_2]) {
std::swap(weights_strides[matmul_dim_1], weights_strides[matmul_dim_2]);
std::swap(weights_md_copy.dims[matmul_dim_1],
weights_md_copy.dims[matmul_dim_2]);
conf.transpose_weights = true;
}
init_md_t_sc_from_md(weights_md_t_, &weights_md_copy);
memory_desc_t dst_md_copy = *dst_d.md_;
auto &dst_strides = dst_md_copy.format_desc.blocking.strides;
if (dst_strides[matmul_dim_1] < dst_strides[matmul_dim_2]) {
std::swap(dst_strides[matmul_dim_1], dst_strides[matmul_dim_2]);
std::swap(
dst_md_copy.dims[matmul_dim_1], dst_md_copy.dims[matmul_dim_2]);
conf.transpose_dst = true;
}
init_md_t_sc_from_md(dst_md_t_, &dst_md_copy);
if (with_bias()) {
memory_desc_t bias_md_copy = *bias_d.md_;
auto &bias_strides = bias_md_copy.format_desc.blocking.strides;
if (bias_strides[matmul_dim_1] < bias_strides[matmul_dim_2]) {
std::swap(bias_strides[matmul_dim_1], bias_strides[matmul_dim_2]);
std::swap(bias_md_copy.dims[matmul_dim_1],
bias_md_copy.dims[matmul_dim_2]);
conf.transpose_bias = true;
}
conf.bias_md = xpu::sycl::md_t(&bias_md_copy);
}
dims_t dst_blocks;
for (int i = 0; i < matmul_kernel_fwd_t::max_supported_ndims; i++) {
if (i < dst_md_t.ndims_) {
dst_blocks[i] = dst_md_t.dims_[i];
} else {
dst_blocks[i] = 1;
}
}
dst_blocks[matmul_dim_1] = math::div_up(
dst_blocks[matmul_dim_1], matmul_kernel_fwd_t::register_block_N);
dst_blocks[matmul_dim_2] = math::div_up(
dst_blocks[matmul_dim_2], matmul_kernel_fwd_t::register_block_M);
int n_blocks = 1;
for (int i = 0; i < matmul_kernel_fwd_t::max_supported_ndims; i++) {
n_blocks *= dst_blocks[i];
}
conf.wk_size = n_blocks;
int high_two_bits = 3 << (ndims() - 2);
// last two dimensions of data and weights are never broadcast
conf.data_mask = utils::get_dims_mask(dst_d.dims(), src_d.dims(), ndims())
| high_two_bits;
conf.weights_mask
= utils::get_dims_mask(dst_d.dims(), weights_d.dims(), ndims())
| high_two_bits;
conf.bias_mask = utils::get_dims_mask(dst_d.dims(), bias_d.dims(), ndims());
return status::success;
}
status_t ref_matmul_t::init(impl::engine_t *engine) {
const auto kid = ::sycl::get_kernel_id<matmul_kernel_fwd_t>();
CHECK(create_matmul_kernel(engine, kid, &kernel_,
{pd()->data_md_t, pd()->dst_md_t, pd()->weights_md_t}));
return status::success;
}
status_t ref_matmul_t::create_matmul_kernel(impl::engine_t *engine,
::sycl::kernel_id kid, kernel_t *kernel,
xpu::sycl::md_t_spec_const_pod pod) {
auto ctx = utils::downcast<const xpu::sycl::engine_impl_t *>(engine->impl())
->context();
auto input_bundle = ::sycl::get_kernel_bundle<::sycl::bundle_state::input>(
ctx, {kid});
input_bundle.template set_specialization_constant<
detail::matmul::md_t_spec_const_id>(pod);
try {
(*kernel) = kernel_t(::sycl::build(input_bundle));
} catch (const ::sycl::exception &e) { return status::runtime_error; }
return status::success;
}
status_t ref_matmul_t::execute(const exec_ctx_t &ctx) const {
if (memory_desc_wrapper(pd()->dst_md()).size() == 0) return status::success;
parallel_for(ctx, kernel_, [&](::sycl::handler &cgh) {
matmul_kernel_fwd_t matmul_kernel(pd()->conf_, cgh, ctx);
const int block_size = 32;
const int wg_size = 32;
const int t_work = pd()->conf_.wk_size;
const int wg_work = wg_size * block_size;
const int wg_cnt = utils::div_up(t_work, wg_work);
cgh.parallel_for(
::sycl::nd_range<1>(wg_cnt * wg_size, wg_size), matmul_kernel);
});
return status::success;
}
} // namespace sycl
} // namespace generic
} // namespace gpu
} // namespace impl
} // namespace dnnl