Skip to content

Commit bda15af

Browse files
deb-intelvpirogov
authored andcommitted
doc: Updated latex in rnn and prelu files
Signed-off-by: Taylor, Deb <deb.taylor@intel.com>
1 parent b782e13 commit bda15af

File tree

2 files changed

+7
-26
lines changed

2 files changed

+7
-26
lines changed

doc/primitives/prelu.md

+6-8
Original file line numberDiff line numberDiff line change
@@ -55,17 +55,15 @@ and #dnnl_forward_inference propagation kinds.
5555
The backward propagation computes \f$\diffsrc\f$ and \f$\diffweights\f$.
5656
For no broadcast case, results are calculated using formula:
5757

58-
\f[
59-
\begin{align}
60-
\mbox{diff_src}(n, c, h, w) &=
58+
\f[
59+
\diffdst(n, c, h, w) &=
6160
\begin{cases}
62-
\mbox{diff_dst}(n, c, h, w) & \mbox{if } \src(n, c, h, w) > 0 \\
63-
\mbox{diff_dst}(n, c, h, w) \cdot \weights(n, c, h, w) &
61+
\diffdst(n, c, h, w) & \mbox{if } \src(n, c, h, w) > 0 \\
62+
\diffdst(n, c, h, w) \cdot \weights(n, c, h, w) &
6463
\mbox{if } \src(n, c, h, w) \leq 0
6564
\end{cases}\\\\
66-
\mbox{diff_weights}(n, c, h, w) &=
67-
\min(\src(n, c, h, w), 0) \cdot \mbox{diff_dst}(n, c, h, w)
68-
\end{align}
65+
\diff_weights(n, c, h, w) &=
66+
\min(\src(n, c, h, w), 0) \cdot \diffdst(n, c, h, w)
6967
\f]
7068

7169
Similar to forward propagation, result is calculated taking into

doc/primitives/rnn.md

+1-18
Original file line numberDiff line numberDiff line change
@@ -47,9 +47,8 @@ where \f$t,l\f$ are the indices of the timestamp and the layer of the cell being
4747

4848
And here is the equation for LSTM cells:
4949

50-
\f[ \begin{equation*}
50+
\f[
5151
(h_{t, l},c_{t,l}) = Cell(h_{t, l-1}, h_{t-1, l}, c_{t-1,l})
52-
\end{equation*}
5352
\f]
5453
where \f$t,l\f$ are the indices of the timestamp and the layer of the cell being executed.
5554

@@ -84,10 +83,8 @@ functions. The following equations defines the mathematical operation
8483
performed by the Vanilla RNN cell for the forward pass:
8584

8685
\f[
87-
\begin{align}
8886
a_t &= W \cdot h_{t,l-1} + U \cdot h_{t-1, l} + B \\
8987
h_t &= activation(a_t)
90-
\end{align}
9188
\f]
9289

9390
### LSTM
@@ -111,7 +108,6 @@ following equation gives the mathematical description of these gates and output
111108
for the forward pass:
112109

113110
\f[
114-
\begin{align}
115111
i_t &= \sigma(W_i \cdot h_{t,l-1} + U_i \cdot h_{t-1, l} + B_i) \\
116112
f_t &= \sigma(W_f \cdot h_{t,l-1} + U_f \cdot h_{t-1, l} + B_f) \\
117113
\\
@@ -120,7 +116,6 @@ c_t &= f_t * c_{t-1} + i_t * \tilde c_t \\
120116
\\
121117
o_t &= \sigma(W_o \cdot h_{t,l-1} + U_o \cdot h_{t-1, l} + B_o) \\
122118
h_t &= \tanh(c_t) * o_t
123-
\end{align}
124119
\f]
125120

126121
where \f$W_*\f$ are stored in \weightslayer, \f$U_*\f$ are stored in
@@ -151,7 +146,6 @@ on the gates. For peephole weights, the gates order is `i`, `f`,
151146
and output for the forward pass:
152147

153148
\f[
154-
\begin{align}
155149
i_t &= \sigma(W_i \cdot h_{t,l-1} + U_i \cdot h_{t-1, l} + P_i \cdot c_{t-1} + B_i) \\
156150
f_t &= \sigma(W_f \cdot h_{t,l-1} + U_f \cdot h_{t-1, l} + P_f \cdot c_{t-1} + B_f) \\
157151
\\
@@ -160,7 +154,6 @@ c_t &= f_t * c_{t-1} + i_t * \tilde c_t \\
160154
\\
161155
o_t &= \sigma(W_o \cdot h_{t,l-1} + U_o \cdot h_{t-1, l} + P_o \cdot c_t + B_o) \\
162156
h_t &= \tanh(c_t) * o_t
163-
\end{align}
164157
\f]
165158

166159
where \f$P_*\f$ are stored in `weights_peephole`, and the other parameters are
@@ -192,7 +185,6 @@ description of these gates and output for the forward pass (for simplicity,
192185
LSTM without peephole is shown):
193186

194187
\f[
195-
\begin{align}
196188
i_t &= \sigma(W_i \cdot h_{t,l-1} + U_i \cdot h_{t-1,l} + B_i) \\
197189
f_t &= \sigma(W_f \cdot h_{t,l-1} + U_f \cdot h_{t-1,l} + B_f) \\
198190
& \\
@@ -201,7 +193,6 @@ LSTM without peephole is shown):
201193
& \\
202194
o_t &= \sigma(W_o \cdot h_{t,l-1} + U_o \cdot h_{t-1,l} + B_o) \\
203195
h_t &= R \cdot (\tanh(c_t) * o_t)
204-
\end{align}
205196
\f]
206197

207198
where \f$R\f$ is stored in `weights_projection`, and the other parameters are
@@ -230,12 +221,10 @@ implicitly require the order of these gates to be `u`, `r`, and `o`. The
230221
following equation gives the mathematical definition of these gates.
231222

232223
\f[
233-
\begin{align}
234224
u_t &= \sigma(W_u \cdot h_{t,l-1} + U_u \cdot h_{t-1, l} + B_u) \\
235225
r_t &= \sigma(W_r \cdot h_{t,l-1} + U_r \cdot h_{t-1, l} + B_r) \\
236226
o_t &= \tanh(W_o \cdot h_{t,l-1} + U_o \cdot (r_t * h_{t-1, l}) + B_o) \\
237227
h_t &= u_t * h_{t-1, l} + (1 - u_t) * o_t
238-
\end{align}
239228
\f]
240229

241230
where \f$W_*\f$ are in \weightslayer, \f$U_*\f$ are in
@@ -264,12 +253,10 @@ The following equation describes the mathematical behavior of the
264253
Linear-Before-Reset GRU cell.
265254

266255
\f[
267-
\begin{align}
268256
u_t &= \sigma(W_u \cdot h_{t,l-1} + U_u \cdot h_{t-1, l} + B_u) \\
269257
r_t &= \sigma(W_r \cdot h_{t,l-1} + U_r \cdot h_{t-1, l} + B_r) \\
270258
o_t &= \tanh(W_o \cdot h_{t,l-1} + r_t *(U_o \cdot h_{t-1, l} + B_{u'}) + B_o) \\
271259
h_t &= u_t * h_{t-1, l} + (1 - u_t) * o_t
272-
\end{align}
273260
\f]
274261

275262
Note that for all tensors with a dimension depending on the gate number, except
@@ -300,13 +287,11 @@ implicitly require the order of these gates to be `u`, `r`, and `o`. The
300287
following equation gives the mathematical definition of these gates.
301288

302289
\f[
303-
\begin{align}
304290
u_t &= \sigma(W_u \cdot h_{t,l-1} + U_u \cdot h_{t-1, l} + B_u) \\
305291
r_t &= \sigma(W_r \cdot h_{t,l-1} + U_r \cdot h_{t-1, l} + B_r) \\
306292
o_t &= \tanh(W_o \cdot h_{t,l-1} + U_o \cdot (r_t * h_{t-1, l}) + B_o) \\
307293
\tilde u_t &= (1 - a_t) * u_t \\
308294
h_t &= \tilde u_t * h_{t-1, l} + (1 - \tilde u_t) * o_t
309-
\end{align}
310295
\f]
311296

312297
where \f$W_*\f$ are in \weightslayer, \f$U_*\f$ are in
@@ -330,13 +315,11 @@ The following equation describes the mathematical behavior of the
330315
Linear-Before-Reset AUGRU cell.
331316

332317
\f[
333-
\begin{align}
334318
u_t &= \sigma(W_u \cdot h_{t,l-1} + U_u \cdot h_{t-1, l} + B_u) \\
335319
r_t &= \sigma(W_r \cdot h_{t,l-1} + U_r \cdot h_{t-1, l} + B_r) \\
336320
o_t &= \tanh(W_o \cdot h_{t,l-1} + r_t *(U_o \cdot h_{t-1, l} + B_{u'}) + B_o) \\
337321
\tilde u_t &= (1 - a_t) * u_t \\
338322
h_t &= \tilde u_t * h_{t-1, l} + (1 - \tilde u_t) * o_t
339-
\end{align}
340323
\f]
341324

342325
Note that for all tensors with a dimension depending on the gate number, except

0 commit comments

Comments
 (0)