-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongest_Valid_Parentheses
81 lines (73 loc) · 3.36 KB
/
Longest_Valid_Parentheses
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*
Longest Valid Parentheses
Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.
For "(()", the longest valid parentheses substring is "()", which has length = 2.
Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.
Date:Apr3,2014
*/
//version2
class Solution {
public:
int longestValidParentheses(string s) {
stack<int> mystack;//only store the indices of '('
int head=-1;//head is the starting position of a valid parentheses substring
int ans=0;//ans is the length of the longest valid parentheses substring
for (int i=0; i<s.size(); ++i)
{
if (s[i]=='(') mystack.push(i);
//the case where (s[i]==')' && mystack is not empty)
else if (!mystack.empty())
{
mystack.pop();
if (mystack.empty()) ans = (i-head>ans)?(i-head):ans;
else ans=(i-mystack.top()>ans)?(i-mystack.top()):ans;
}
//the case where (s[i]==')' && mystack is empty)
else
{
head=i;
}
}
return ans;
}
};
REMARK:
1. First, has some idea but not clear. I wrote version1. version1 has minor errors and not efficient. Got version2 from Jinil.
IDEA: Use a stack of type int to store the indices of '(', head denote the starting index of the valid parentheses substring.
(case1) if the element is '(', we push it into the stack.
(case2) if the element is ')':
(case2a)if the stack is not empty, it means we have a '(' in the stack to match the current ')'. We do pop() on the stack to check:
(case2a1)if the stack is empty, then it means the previous found pairs should be added, then the length of valid parentheses substring= i - head.
(case2a2)if the stack is not empty, then the length of valid parentheses substring=(current index)-(top element index in the stack)
(cases2b)if the stack is empty, means we cannot find a '(' to match the current ')', we then update the variable head to the starting index of the next valid parentheses substring.
2. Time: O(n)
3.
//version1
IDEA: Whenever we meet a '(', we push it into the stack. Whenever we meet a ')', we check if there is a corresponding '(' before it: if there is, we add 2 to the length; otherwise we break. Note in this way, during the process, we will not see this case: ())) since whenever we see a ')', we pop it out and check. Does this method work?
Answer: No. Consider this case: ()((). The length of "()(()" is 2. But using this solution, we get 4. Perhap, after we make some modification, it may work. However, it there is a if statement inside another if statement, which indicates O(n^2). We still have to discard this method and choose a linear method.
class Solution {
public:
int longestValidParentheses(string s) {
if (s.length()<=1) return 0;
int globLen=0;
for (int i=0; i<s.length(); ++i)
{
string ss = s.substr(i);
int localLen=0;
stack<char> mystack;
mystack.clear();
for (int j=0; j<ss.length(); ++j)
{
if (ss[j]=='(') mystack.push(ss[j]);
else if (ss[j]==')')
{
mystack.pop();
if (!mystack.empty()) {mystack.pop(); localLen += 2;}
else break;
}
}
if (localLen>globLen) globLen = localLen;
}
return globLen;
}
};