The python test framework is built on top of the ChipDeviceCtrl.py python controller API and the Mobly test framework. Python tests are interaction tests, and can be used for certification testing, and / or integration testing in the CI.
Python tests located in src/python_testing
- src/python_testing/hello_test.py - sample test showing test setup and test harness integration
- https://github.com/google/mobly/blob/master/docs/tutorial.md
- ChipDeviceCtrl.py - Controller implementation - API documentation
- scripts/tests/run_python_test.py to easily set up app and script for testing - used in CI
- Defining arguments in the test script
- In order to streamline the configuration and execution of tests, it is essential to define arguments at the top of the test script. This section should include various parameters and their respective values, which will guide the test runner on how to execute the tests.
- All test classes inherit from MatterBaseTest in
matter_testing_support.py
- support for commissioning using the python controller
- default controller (self.default_controller) of type ChipDeviceCtrl
- MatterBaseTest inherits from the Mobly BaseTestClass
- Test function(s) (start with test_) and are all run automatically
- To run in the test harness, the test name must be test_TC_PICSCODE_#_#
- more information about integration with the test harness can be found in Test Harness helpers section
- any tests that use async function (read / write / commands) should be decorated with the @async_test_body decorator
- To run in the test harness, the test name must be test_TC_PICSCODE_#_#
- Use ChipDeviceCtrl to interact with the DUT
- Controller API is in ChipDeviceCtrl.py (see API doc in file)
- some support functions in matter_testing_support.py
- Use Mobly assertions for failing tests
- self.step() along with a steps_ function to mark test plan steps for cert tests
# test-runner-runs: run1
# test-runner-run/run1/app: ${ALL_CLUSTERS_APP}
# test-runner-run/run1/factoryreset: True
# test-runner-run/run1/quiet: True
# test-runner-run/run1/app-args: --discriminator 1234 --KVS kvs1 --trace-to json:${TRACE_APP}.json
# test-runner-run/run1/script-args: --storage-path admin_storage.json --commissioning-method on-network --discriminator 1234 --passcode 20202021 --trace-to json:${TRACE_TEST_JSON}.json --trace-to perfetto:${TRACE_TEST_PERFETTO}.perfetto
class TC_MYTEST_1_1(MatterBaseTest):
@async_test_body
async def test_TC_MYTEST_1_1(self):
vendor_name = await self.read_single_attribute_check_success(
dev_ctrl=self.default_controller, <span style="color:#38761D"># defaults to
self.default_controlller</span>
node_id = self.dut_node_id, <span style="color:#38761D"># defaults to
self.dut_node_id</span>
cluster=Clusters.BasicInformation,
attribute=Clusters.BasicInformation.Attributes.VendorName,
endpoint = 0, <span style="color:#38761D">#defaults to 0</span>
)
asserts.assert_equal(vendor_name, “Test vendor name”, “Unexpected vendor name”)
if __name__ == "__main__":
default_matter_test_main()
In this test, asserts.assert_equal is used to fail the test on condition failure (throws an exception).
Because the test requires the use of the async function
read_single_attribute_check_success, the test is decorated with the
@async_test_body
decorator
The default_matter_test_main() function is used to run the test on the command line. These two lines should appear verbatim at the bottom of every python test file.
Below is the format:
# test-runner-runs: <run_identifier>
# test-runner-run/<run_identifier>/app: ${TYPE_OF_APP}
# test-runner-run/<run_identifier>/factoryreset: <True|False>
# test-runner-run/<run_identifier>/quiet: <True|False>
# test-runner-run/<run_identifier>/app-args: <app_arguments>
# test-runner-run/<run_identifier>/script-args: <script_arguments>
-
test-runner-runs: Specifies the identifier for the run. This can be any unique identifier.
- Example: run1
-
test-runner-run/<run_identifier>/app: Indicates the application to be used in the test.
- Example: ${ALL_CLUSTERS_APP}
-
test-runner-run/<run_identifier>/factoryreset: Determines whether a factory reset should be performed before the test.
- Example: True
-
test-runner-run/<run_identifier>/quiet: Sets the verbosity level of the test run. When set to True, the test run will be quieter.
- Example: True
-
test-runner-run/<run_identifier>/app-args: Specifies the arguments to be passed to the application during the test.
- Example: --discriminator 1234 --KVS kvs1 --trace-to json:${TRACE_APP}.json
-
test-runner-run/<run_identifier>/script-args: Specifies the arguments to be passed to the test script.
- Example: --storage-path admin_storage.json --commissioning-method on-network --discriminator 1234 --passcode 20202021 --trace-to json:${TRACE_TEST_JSON}.json --trace-to perfetto:${TRACE_TEST_PERFETTO}.perfetto
This structured format ensures that all necessary configurations are clearly defined and easily understood, allowing for consistent and reliable test execution.
- Objects.py for codegen,
- ClusterObjects.py for classes
Common import used in test files: import chip.clusters as Clusters
Each cluster is defined in the Clusters.<ClusterName>
namespace and contains
always:
- id
- descriptor
Each Clusters.<ClusterName>
will include the appropriate sub-classes (if
defined for the cluster):
- Enums
- Bitmaps
- Structs
- Attributes
- Commands
- Events
Attributes derive from ClusterAttributeDescriptor
Each Clusters.<ClusterName>.Attributes.<AttributeName>
class has:
- cluster_id
- attribute_id
- attribute_type
- value
Example:
- class - Clusters.OnOff.Attributes.OnTime
- used for Read commands
- instance - Clusters.OnOff.Attributes.OnTime(5)
- sets the value to 5
- pass the instance to write commands to write the value
Commands derive from ClusterCommand
Each Clusters.<ClusterName>.Commands.<CommandName>
class has:
- cluster_id
- command_id
- is_client
- response_type (None for status response)
- descriptor
- data members (if required)
Example:
- Clusters.OnOff.Commands.OnWithTimedOff(onOffControl=0, onTime=5, offWaitTime=8)
- Clusters.OnOff.Commands.OnWithTimedOff()
- command with no fields
Events derive from ClusterEvent
Each Clusters.<ClusterName>.Events.<EventName>
class has:
- cluster_id
- event_id
- descriptor
- data members if required
Example:
- Clusters.AccessControl.Events.AccessControlEntryChanged.adminNodeID
Enums derive from MatterIntEnum
Each Clusters.<ClusterName>.Enum.<EnumName>
has
- k
- kUnknownEnumValue (used for testing, do not transmit)
Example:
- Clusters.AccessControl.Enums.AccessControlEntryPrivilegeEnum.kAdminister
Bitmaps derive from IntFlag
Each Clusters.<ClusterName>.Bitmaps.<BitmapName>
has: - k
Special class:
- class Feature(IntFlag) - contains the feature map bitmaps
Example:
- Clusters.LaundryWasherControls.Bitmaps.Feature.kSpin
Structs derive from ClusterObject
Each Clusters.<ClusterName>.Structs.<StructName>
has:
- descriptor
- data members
Example
- Clusters.BasicInformation.Structs.ProductAppearanceStruct(
- finish=Clusters.BasicInformation.Enums.ProductFinishEnum.kFabric,
- primaryColor=Clusters.BasicInformation.Enums.ColorEnum.kBlack)
ClusterObjects.py has a set of objects that map ID to the code generated object.
chip.clusters.ClusterObjects.ALL_CLUSTERS
- dict[int, Cluster] - maps cluster ID to Cluster class
- cluster = chip.clusters.ClusterObjects.ALL_CLUSTERS[cluster_id]
chip.clusters.ClusterObjects.ALL_ATTRIBUTES
- dict[int, dict[int, ClusterAttributeDescriptor]] - maps cluster ID to a dict of attribute ID to attribute class
- attr = chip.clusters.ClusterObjects.ALL_ATTRIBUTES[cluster_id][attribute_id]
chip.clusters.ClusterObjects.ALL_ACCEPTED_COMMANDS/ALL_GENERATED_COMMANDS
- dict[int, dict[int, ClusterCommand]]
- cmd = chip.clusters.ClusterObjects.ALL_ACCEPTED_COMMANDS[cluster_id][cmd_id]
The ChipDeviceCtrl API is implemented in ChipDeviceCtrl.py.
The ChipDeviceCtrl implements a python-based controller that can be used to commission and control devices. The API is documented here in the ChipDeviceCtrl API documentation
The API doc gives full descriptions of the APIs being used. The most commonly used functions are linked below
- Read both attributes and events
- Can handle wildcard or concrete path
- convenience wrapper for Read for attributes
Examples: Wildcard read (all clusters, all endpoints):
await dev_ctrl.ReadAttribute(node_id, [()])
Wildcard read (single endpoint 0)
await dev_ctrl.ReadAttribute(node_id, [(0)])
Wildcard read (single cluster from single endpoint 0)
await dev_ctrl.ReadAttribute(node_id, [(1, Clusters.OnOff)])
Single attribute
await dev_ctrl.ReadAttribute(node_id, [(1, Clusters.OnOff.Attributes.OnTime)])
Multi-path
await dev_ctrl.ReadAttribute(node_id, [(1, Clusters.OnOff.Attributes.OnTime),(1, Clusters.OnOff.Attributes.OnOff)])
- convenience wrapper for Read
- Similar to ReadAttribute, but the tuple includes urgency as the last number
Example:
urgent = 1
await dev_ctrl ReadEvent(node_id, [(1,
Clusters.TimeSynchronization.Events.MissingTrustedTimeSource, urgent)])
Subscriptions are handled in the Read / ReadAttribute / ReadEvent APIs. To
initiate a subscription, set the reportInterval
tuple to set the floor and
ceiling. The keepSubscriptions
and autoResubscribe
parameters also apply to
subscriptions.
Subscription return ClusterAttribute.SubscriptionTransaction
. This can be used
to set callbacks. The object is returned after the priming data read is
complete, and the values there are used to populate the cache. The attribute
callbacks are called on update.
- SetAttributeUpdateCallback
- Callable[[TypedAttributePath, SubscriptionTransaction], None]
- SetEventUpdateCallback
- Callable[[EventReadResult, SubscriptionTransaction], None]
- await changes in the main loop using a trigger mechanism from the callback.
Example for setting callbacks:
q = queue.Queue()
cb = SimpleEventCallback("cb", cluster_id, event_id, q)
urgent = 1
subscription = await dev_ctrl.ReadEvent(nodeid=1, events=[(1, event, urgent)], reportInterval=[1, 3])
subscription.SetEventUpdateCallback(callback=cb)
try:
q.get(block=True, timeout=timeout)
except queue.Empty:
asserts.assert_fail(“Timeout on event”)
Handles concrete paths only (per spec), can handle lists. Returns list of PyChipError
- Instantiate the
ClusterAttributeDescriptor
class with the value you want to send, tuple is (endpoint, attribute)- use timedRequestTimeoutMs for timed request actions
Example:
res = await devCtrl.WriteAttribute(nodeid=0, attributes=[(0,Clusters.BasicInformation.Attributes.NodeLabel("Test"))])
asserts.assert_equal(ret[0].status, Status.Success, “write failed”)
- Instantiate the command with the values you need to populate
- If there is a non-status return, it’s returned from the command
- If there is a pure status return it will return nothing
- Raises InteractionModelError on failure
Example:
pai = await dev_ctrl.SendCommand(nodeid, 0, Clusters.OperationalCredentials.Commands.CertificateChainRequest(2))
- Because we tend to do a lot of single read / single commands in tests, we
added a couple of helpers in MatterBaseTest that use some of the default
values
- read_single_attribute_check_success
- read_single_attribute_expect_error
- send_single_cmd
- step() function to mark step progress for the test harness
- skip / skip_step / skip_remaining_steps functions for test harness integration
- check_pics / pics_guard to handle pics
The test system is based on Mobly, and the matter_testing_support.py class provides some helpers for Mobly integration
- default_matter_test_main
- Sets up commissioning and finds all tests, parses command arguments
use as:
if __name__ == "__main__":
default_matter_test_main()
- Mobly will run all functions starting with test_ by default
- use --tests command line argument to specify
- Setup / teardown functions
- setup_class / teardown_class
- setup_test / teardown_test
- Don’t forget to call the super() if you override these
The python testing system also includes several functions for integrations with the test harness. To integrate with the test harness, you can define the following functions on your class to allow the test harness UI to properly work through your tests.
All of these functions are demonstrated in the hello_example.py reference.
- step enumeration
- define a function called
steps_YourFunctionName
to allow the test harness to display the steps - use the self.step(
<stepnum>
) function to walk through the steps
- define a function called
- test description
- define a function called
desc_YourFunctionName
to send back a string with the test description
- define a function called
- top level PICS
- To guard your test on a top level PICS, define a function called
pics_YourFunctionName
to send back a list of pics. If this function is omitted, the test will be run for every endpoint on every device.
- To guard your test on a top level PICS, define a function called
- overriding the default timeout
- if the test is exceptionally long running, define a property function
default_timeout
to adjust the timeout. The default is 90 seconds
- if the test is exceptionally long running, define a property function
Deferred failures: For some tests, it makes sense to perform the entire test before failing and collect all the errors so the developers can address all the failures without needing to re-run the test multiple times. For example, tests that look at every attribute on the cluster and perform independent operations on them etc.
For such tests, use the ProblemNotice format and the convenience functions:
- self.record_error
- self.record_warning
These functions keep track of the problems, and will print them at the end of the test. The test will not be failed until the assert is called.
A good example of this type of test can be found in the device basic composition tests, where all the test steps are independent and performed on a single read. See Device Basic Composition tests
- Use help to get a full list
- --commissioning-method
- need to re-commission to python controller as chip-tool and python commissioner do not share a credentials
- --discriminator, --passcode, --qr-code, --manual-code
- --tests to select tests
- --PICS
- --int-arg, --bool-arg, --float-arg, --string-arg, --json-arg, --hex-arg
- specify as key:value ex --bool-arg pixit_name:False
- used for custom arguments to scripts (PIXITs)
- PICS
- use --PICS on the command line to specify the PICS file
- use check_pics to gate steps in a file
- have_whatever = check_pics(“PICS.S.WHATEVER”)
- PIXITs
- use --int-arg, --bool-arg etc on the command line to specify PIXITs
- Warn users if they don’t set required values, add instructions in the comments
- pixit_value = self.user_params.get("pixit_name", default)
To create a controller on a new fabric:
new_CA = self.certificate_authority_manager.NewCertificateAuthority()
new_fabric_admin = new_certificate_authority.NewFabricAdmin(vendorId=0xFFF1,
fabricId=self.matter_test_config.fabric_id + 1)
TH2 = new_fabric_admin.NewController(nodeId=112233)
Open a commissioning window (ECW):
params = self.OpenCommissioningWindow(dev_ctrl=self.default_controller, node_id=self.dut_node_id)
To create a new controller on the SAME fabric, allocate a new controller from the fabric admin
Fabric admin for default controller:
fa=self.certificate_authority_manager.activeCaList[0].adminList[0]
second_ctrl = fa.new_fabric_admin.NewController(nodeId=node_id)
- basic_composition_support
- wildcard read, whole device analysis
- CommissioningFlowBlocks
- various commissioning support for core tests
- spec_parsing_support
- parsing data model XML into python readable format
The scripts require the python wheel to be compiled and installed before running. To compile and install the wheel, do the following:
First activate the matter environment using either
. ./scripts/bootstrap.sh
or
. ./scripts/activate.sh
bootstrap.sh should be used for for the first setup, activate.sh may be used for subsequent setups as it is faster.
Next build the python wheels and create / activate a venv (called py
here, but
any name may be used)
./scripts/build_python.sh -i py
source py/bin/activate
- Note that devices must be commissioned by the python test harness to run tests. chip-tool and the python test harness DO NOT share a fabric.
Once the wheel is installed, you can run the python script as a normal python file for local testing against an already-running DUT. This can be an example app on the host computer (running in a different terminal), or a separate device that will be commissioned either over BLE or WiFi.
For example, to run the TC-ACE-1.2 tests against an un-commissioned DUT:
python3 src/python_testing/TC_ACE_1_2.py --commissioning-method on-network --qr-code MT:-24J0AFN00KA0648G00
Some tests require additional arguments (ex. PIXITs or configuration variables
for the CI). These arguments can be passed as sets of key-value pairs using the
--<type>-arg
command line arguments. For example
--int-arg PIXIT.ACE.APPENDPOINT:1 PIXIT.ACE.APPDEVTYPEID:0x0100 --string-arg PIXIT.ACE.APPCLUSTER:OnOff PIXIT.ACE.APPATTRIBUTE:OnOff
./scripts/tests/run_python_test.py
is a convenient script that starts an
example DUT on the host and includes factory reset support
./scripts/tests/run_python_test.py --factoryreset --app <your_app> --app-args "whatever" --script <your_script> --script-args "whatever"
- add to .github/workflows/tests.yaml repl_tests_linux
- don’t forget to set the PICS file to the ci-pics-values
- if there are things in your test that will fail on CI (ex. test vendor
checks), gate them on the PICS_SDK_CI_ONLY
- is_ci = self.check_pics('PICS_SDK_CI_ONLY')