-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathObjective_LA_DE_v2_1h.m
394 lines (338 loc) · 19.1 KB
/
Objective_LA_DE_v2_1h.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
function [cost] = Objective_LA_DE_v2_1h(x)
% With modified strategy for excess demand scenario/case (elseif statement & not self-discharging twice in the same time-step)
% Normalized LCOE and emissions to always lie between 0 and 1
% Function performs optimal dispatch to output overall weighted cost function that needs to be minimized
% Variable inputs (that we minimize w.r.t) are:
% no. of solar PV arrays, no. of wind turbines, initial battery capacity (in kWh)
n_s = x(1);
n_w = x(2);
Eb_init = x(3);
% Given fixed inputs: Wind speed, ambient external air temperature, solar radiation, electricity demand
% Have all of this data available over a whole year with hourly resolution
% LOAD ALL FIXED EXTERNAL/EXOGENOUS INPUT VARIABLES
load('irradiance.mat'); % Solar insolation/irradiance (kW/m^2)
load('temp.mat'); % Ambient air temperature (C)
load('wind_speed.mat'); % (m/s)
load('Load.mat'); % Hourly power (kW) demand profiles
% Hourly energy demand profile = power demand * time interval
% Initialize variables
P_s = zeros(1,8760); % (kW) - DC
P_w = zeros(1,8760); % (kW) - AC
P_DE = zeros(1,8760); % (kW) - AC
P_b_LA = zeros(1,8760); % (kW) - DC
P_RES = zeros(1,8760); % (kW) - DC
P_dump = zeros(1,8760); % Excess power (RES output) sent to dump loads/ground as DC (kW)
soc_LA = zeros(1,8761); % between 0 and 1
DE_ON = zeros(1,8760); % Boolean variable to keep track of whether DE is online/committed during that hour
% Lost load or Amount of demand response (curtailment/shifting) needed to balance MG
P_lost = zeros(1,8760); % (kW) - AC
% COSTS
i = 0.09; % Nominal interest/discount rate (https://tradingeconomics.com/kenya/interest-rate)
f = 0.057; % Inflation/escalation rate (https://tradingeconomics.com/kenya/inflation-cpi)
r = (i-f)/(1+f); % Real discount/interest rate
t_overall = 25; % Overall system lifetime (y) = lifetime of solar (longest surviving components)
CRF = (r*(1+r)^t_overall)/((1+r)^t_overall - 1); % Capital recovery factor
% Startup and shutdown costs of conventional generators
DE_startup = 0;
DE_shutdown = 0;
% Fuel costs
C_fuel_DE = 0;
% Fixed system parameters
% SOLAR
% PV panel specs from https://www.mitsubishielectricsolar.com/images/uploads/documents/specs/MLU_spec_sheet_250W_255W.pdf
% For 255 W system - Monocrystalline Si
eta_r = 0.154; % Manufacturer rated efficiency
T_r = 25; % Standard test conditions (reference cell temperature)
I_PV_NOCT = 0.8; % Hourly solar irradiance at NOCT - Normal/nominal operating cell temp (in kW/m^2)
T_c_NOCT = 45.7; % PV cell temp at NOCT (Celsius)
T_a_NOCT = 20; % Ambient temp at NOCT (Celsius)
beta_s = 0.0045; % Temp coefficient of module/generator efficiency (of Pmax)
t_s = 25; % Lifetime of solar PV array (y)
Ps_rated = 255; % Rated max power of each module (W)
eta_pc = 1; % Power conditioning efficiency (= 1 or 100% since it's assumed that a perfect MPPT is used)
Ps_rated_total = n_s * Ps_rated; % Total solar PV installed capacity in microgrid (W)
IC_s = (Ps_rated_total/1000) * 1210; % Assuming installed PV costs of $1210/kW (source: IRENA costs report 2018, total installed costs)
% likely to be a slight underestimate since this is the global weighted
% average for larger utility scale projects
OM_s = (1/100)*IC_s; % Fixed annual O&M costs ($/y) - from Kaabeche et al. 2011a
% Battery O&M cost as $/kWh-installed
% WIND
beta_w = 1/7; % Typical value of power law exponent for open land
% Use data from this spec sheet: https://farm-energy.extension.org/wp-content/uploads/2019/04/3.5kW_Spec_Sheet.pdf
h_ref = 1; % Installation height of TAHMO measurement stations (m) - wind speed measured approx. at sea level
h_hub = 14.5; % Tower height to hub/nacelle (m)
Pw_rated = 3.5; % Rated power of each WT (kW)
Pw_rated_total = n_w * Pw_rated;
IC_w = Pw_rated_total * 1500; % Global weighted average total installed costs of onshore wind ($/kW) - IRENA 2018
% This figure is likely to be an underestimate since it averages over both
% large and small-scale turbines, but the initial capital cost per kW of
% installed capacity likely to be higher for the small WT used in this
% project (lacks economies of scale)
OM_w = (3/100)*IC_w; % Fixed annual O&M costs ($/y)
t_w = 20; % Lifetime of wind turbine system (y)
v_c = 2.8; % Cut-in or start-up wind speed (m/s)
v_r = 11; % Rated wind speed (m/s)
v_f = 22; % Cut-out or failure/braking speed (m/s)
A = (1/(v_c^2 - v_r^2)) * (v_c*(v_c + v_r) - 4*v_c*v_r*((v_c + v_r)/(2*v_r))^3);
B = (1/(v_c^2 - v_r^2)) * (4*(v_c + v_r)*((v_c + v_r)/(2*v_r))^3 - 3*(v_c + v_r));
C = (1/(v_c^2 - v_r^2)) * (2 - 4*((v_c + v_r)/(2*v_r))^3);
% Lead-acid battery system - from https://www.nrel.gov/docs/fy16osti/64987.pdf
SOC_min_LA = 0.5;
SOC_max_LA = 0.9; % 40% DoD - much lower compared to Li-ion
delta = 0.05; % Self-discharge rate of battery (5%/month)
P_max_LA = 0.42; % Max continuous real power (kW)
delta_hour = delta/30.5; % Hourly self-discharge rate (%/h)
eta_overall = 0.75; % Battery round trip coulombic efficiency (accounts for both charge & discharge) - from Hu et al. 2017
cycles_LA = 0; % Keeps track of cumulative no. of charge/discharge cycles so far
cycled = 0; % Keeps track of whether the BS has already been self-discharged in the current time step
IC_LA = 255 * Eb_init; % Assuming a price of $255/kWh
OM_LA = (1/100) * IC_LA; % from Kaabeche et al. 2011a ($/y)
RC_LA = 0.9*IC_LA; % Replacement cost at end of service period/lifetime - assumed to be 90% of IC since new installation and permitting fees aren't incurred
Eb_init = Eb_init*3.6e6; % 1 W = 1 J/s
E_C = Eb_init; % Actual capacity is initially at rated maximum (J)
t_LA = 1400; % Average lifetime (cycles)
% Diesel generator specs from Moshi et al. 2016
P_DE_rated = 16; % Rated maximum power of diesel generator (kW) = approx. peak load * 1.5
P_DE_min = 4.8; % Lower limit on power (kW) or k_gen * P_rated (k_gen = 0.3) from Fathima et al.
Ramp = (P_DE_rated*1000)/10; % Max ramp rate of DE (W/min) - NERC disturbance control standard, DG must be able to reach rated capacity within 10 min
% Ramp_up = 0.006038 - 0.000003840*(P_DE_rated/10e3); % from ramp_rates.pdf (as % of nameplate capacity per minute)
% Ramp_down = 0.006783 - 0.000004314*(P_DE_rated/10e3);
IC_DE = 12500; % Initial capital cost for 16 kW rated DE ($) - slightly higher than replacement
RC_DE = 11000; % Replacement cost ($)
Fixed_OM_DE = (2/100)*IC_DE; % Fixed O&M costs ($/y)
Variable_OM_DE = 0.24; % Variable O&M costs ($/h of operation online)
SUC_DE = 0.45; % Start-up cost ($)
SDC_DE = 0.23; % Shut-down cost ($)
% t_DE = 14; % Average lifetime of diesel engine (y) - avg expected life expectancy (https://www.wpowerproducts.com/news/diesel-engine-life-expectancy/)
t_DE = 15000; % Lifetime (h), from Moshi et al. 2016
% Bidirectional converter between AC and DC buses (can act as either rectifier or inverter)
eta_inv = 0.9; % Inverter efficiency (Ogunjuyigbe et al. 2016)
eta_rec = eta_inv; % Both rectifier and inverter assumed to have same parameters (Moshi et al. 2016)
t_inv = 20; % Lifetime of converter (y) - Moshi et al. 2016
P_inv_rated = 12.52; % Maximum rated power of inverter (kW)
IC_inv = 2800; % ($)
% Assume converter has zero maintenance costs
% Start with delta_t = 1 h and then maybe discretize over smaller time intervals
delta_t = 3600; % Calculation period (s) = 1 hour
hour = 0; % Keeps track of the hour in the day
% Normalize emissions wrt a base case where the DE is continuously run for the whole year to meet all the load
CO2 = 0.649 * sum(sum(Load));
CO = 4.063288937 * sum(sum(Load));
NOx = 18.85658039 * sum(sum(Load));
SO2 = 0.007381439 * sum(sum(Load));
VOC = 1.502443664 * sum(sum(Load));
PM = 1.338208931 * sum(sum(Load));
PM10 = 1.338208931 * sum(sum(Load));
PM25 = 1.338208931 * sum(sum(Load));
Emissions_base = CO2 + (CO + NOx + SO2 + VOC + PM + PM10 + PM25)/1000; % (kg)
CO2 = 0;
for t = 1:1:8760 % Simulate over one year with a time-step of 1 h
Excess_demand = 0;
% SOLAR
I = irradiance(t); % Hourly solar irradiance (kW/m^2)
T_a = temp(t);
eta_PV = eta_r * (1 - 0.9 * beta_s * (I/I_PV_NOCT) * (T_c_NOCT - T_a_NOCT) - beta_s * (T_a - T_r)); % Tazvinga et al. 2013
% Alternative model - Kaabeche et al. 2011b
% T_c = T_a + ((T_c_NOCT - 20)/0.8)*I; % Cell temp (C)
% eta_PV = eta_r * eta_pc * (1 - beta_s*(T_c - T_r));
A_c = 120 * 78e-3 * 156e-3; % Surface area of 1 panel rated at 255 W (m^2)
P_s(t) = n_s * eta_PV * A_c * I; % Solar power output (kW) - DC
if (P_s(t) > Ps_rated_total)
P_s(t) = Ps_rated_total;
end
% WIND
v_ref = wind_speed(t);
v_hub = v_ref * (h_hub/h_ref)^beta_w; % Wind speed at hub calculated from measured speed at reference anemometer height
if (v_hub < v_c || v_hub > v_f)
P_w(t) = 0;
elseif (v_c <= v_hub && v_hub <= v_r)
P_w(t) = n_w * Pw_rated * (A + B * v_hub + C * v_hub^2); % Source?
% Alternative formula - Borhanazad et al. 2014
% Pw = ((v_hub^3)*P_rated - P_rated*v_cutin^3)/(v_rated^3 - v_cutin^3);
% Also include commonly known formula using Cp and swept area?
% But need to know variation of Cp with TSR for my specific WT model
else
P_w(t) = n_w * Pw_rated; % Wind power output (kW) - AC
end
% Rectify AC power from WT to DC
P_RES(t) = P_w(t)*eta_rec + P_s(t); % Total renewable power output available at DC bus (kW)
% BATTERY
% Assume battery starts out fully charged (at max safe SOC)
if (t == 1)
soc_LA(t) = 0.9;
end
if (soc_LA(t) > SOC_max_LA)
soc_LA(t) = SOC_max_LA;
end
if (soc_LA(t) < SOC_min_LA)
soc_LA(t) = SOC_min_LA;
end
if (t ~= 1 && soc_LA(t) == SOC_max_LA && soc_LA(t-1) < SOC_max_LA) % Complete 1 charge-discharge cycle
cycles_LA = cycles_LA + 1; % Increment cycle number
E_C = Eb_init*(1 - (cycles_LA*0.0214)/100); % Capacity fading with cycling - https://www.nrel.gov/docs/fy16osti/64987.pdf
end
day_number = ceil(t/24);
if (hour >= 24)
hour = 0;
end
hour = hour + 1;
P_load = Load(day_number,hour); % (kW) - AC
if (P_RES(t) == P_load/eta_inv) % Since RES power needs to inverted to meet AC load
continue
elseif (P_RES(t) > P_load/eta_inv) % Excess supply/generation
if (soc_LA(t) >= SOC_max_LA) % Battery can't be charged further
P_dump(t) = P_RES(t) - P_load/eta_inv; % Send excess power to dump loads/ground - DC
else % Charge battery system
if (P_RES(t) - P_load/eta_inv <= P_max_LA)
P_b_LA(t) = -(P_RES(t) - P_load/eta_inv); % (kW)
soc_LA(t+1) = soc_LA(t)*(1-delta_hour) - P_b_LA(t)*1000*delta_t*(eta_overall/E_C);
cycled = 1;
else
P_b_LA(t) = -P_max_LA;
soc_LA(t+1) = soc_LA(t)*(1-delta_hour) - P_b_LA(t)*1000*delta_t*(eta_overall/E_C);
P_dump(t) = P_RES(t) - P_load/eta_inv - P_max_LA;
cycled = 1;
end
end
else % Insufficient supply/generation
Excess_demand = P_load/eta_inv - P_RES(t); % DC
if (soc_LA(t) > SOC_min_LA) % Discharge battery
if (Excess_demand <= P_max_LA)
P_b_LA(t) = Excess_demand;
soc_LA(t+1) = soc_LA(t)*(1-delta_hour) - P_b_LA(t)*1000*delta_t*(eta_overall/E_C);
Excess_demand = 0; % All load has been met/satisfied
cycled = 1;
else
P_b_LA(t) = P_max_LA;
soc_LA(t+1) = soc_LA(t)*(1-delta_hour) - P_b_LA(t)*1000*delta_t*(eta_overall/E_C);
Excess_demand = Excess_demand - P_max_LA;
cycled = 1;
end
elseif (soc_LA(t) <= SOC_min_LA || Excess_demand > 0) % Need to use backup DE to meet excess load
DE_ON(t) = 1; % Turn DE on
% Power produced by DE is already AC - so can directly meet load
Excess_demand = Excess_demand * eta_inv; % AC
if (Excess_demand <= P_DE_rated)
if (Excess_demand >= P_DE_min)
P_DE(t) = Excess_demand;
% No dumped load
else
P_DE(t) = P_DE_min;
P_dump(t) = (P_DE_min - Excess_demand) * eta_rec; % (kW) - DC
% If we allow excess generator output to charge battery
% DE output must 1st be rectified to DC before charging battery
if (soc_LA(t) < SOC_max_LA)
if (P_dump(t) <= P_max_LA)
if (cycled == 0) % Battery hasn't been cycled/operated yet before in this time step
soc_LA(t+1) = soc_LA(t)*(1-delta_hour) + P_dump(t)*1000*delta_t*(eta_overall/E_C);
else % Battery has already been cycled so don't include self-discharge again
soc_LA(t+1) = soc_LA(t+1) + P_dump(t)*1000*delta_t*(eta_overall/E_C);
end
P_dump(t) = 0;
else
if (cycled == 0) % Battery hasn't been cycled/operated yet before in this time step
soc_LA(t+1) = soc_LA(t)*(1-delta_hour) + P_max_LA*1000*delta_t*(eta_overall/E_C);
else % Battery has already been cycled so don't include self-discharge again
soc_LA(t+1) = soc_LA(t+1) + P_max_LA*1000*delta_t*(eta_overall/E_C);
end
P_dump(t) = P_dump(t) - P_max_LA;
end
end
end
else
P_DE(t) = P_DE_rated;
P_lost(t) = Excess_demand - P_DE_rated;
end
if (t ~= 1 && DE_ON(t-1) == 0) % i.e. DE was offline in the last/most recent time step
DE_startup = DE_startup + SUC_DE;
% Ramp_actual = (Excess_Demand - P_DE(t-1))/60 % actual ramp rate (W/min)
end
else
DE_ON(t) = 0; % Turn DE off
if (t ~= 1 && DE_ON(t-1) == 1) % i.e. DE was online in the last/most recent time step
DE_shutdown = DE_shutdown + SDC_DE;
end
end
end
% Also need to account for (varying) DE efficiency while calculating its fuel consumption!
fuel_DE = 0.08145 * P_DE_rated + 0.246 * P_DE(t); % fuel consumption (L/h) where P is in kW - Kaabeche and Ibtiouen 2014
C_fuel_DE = C_fuel_DE + 3.20 * (fuel_DE / 3.78541); % Diesel fuel cost assuming a price of $3.20/US liquid gallon (value for east Africa from NREL ReOpt)
% Alternatively, can model assume fuel consumption cost to be quadratic function of DE power output (Parisio et al. 2014 and others)
% But need to find right coefficients by data fitting
% CO2 = CO2 + 3.5 * fuel_DE; % Total CO2 emissions (kg) using emission factor of 3.5 kg/L of diesel - source?
CO2 = CO2 + 0.649 * P_DE(t); % Using emission coefficient of 0.649 kg/kWh - Wu et al. 2016
cycled = 0; % Reset
end
if (DE_ON(1) == 1)
DE_startup = DE_startup + SUC_DE;
end
% Upon completion of for loop i.e. after iterating through all hours of the year, C_fuel_DE now gives the total fuel cost over the 1st year of MG operation
% It is assumed that on average, the annual fuel cost remains constant for all subsequent years of the system's lifetime
Var_OM_DE = Variable_OM_DE * sum(DE_ON);
% Total initial capital/installed cost
IC = IC_s + IC_w + IC_LA + IC_DE + IC_inv;
% Total annual recurring costs each year
C_rec = OM_s + OM_w + OM_LA + Fixed_OM_DE + Var_OM_DE + C_fuel_DE + DE_startup + DE_shutdown;
% Present worth of recurring costs
PW_rec = C_rec * (((1+f)/(1+i))*(((1+f)/(1+i))^t_overall - 1))/(((1+f)/(1+i)) - 1);
% Battery replaced every 15 years
% i_adj_LA = (((1+i)^t_LA)/(1+f)^(t_LA - 1)) - 1; % Adjusted nominal interest rate
% PW_LA_rep = RC_LA * (((1+f)/(1+i_adj_LA))*(((1+f)/(1+i_adj_LA))^t_overall - 1))/(((1+f)/(1+i_adj_LA)) - 1);
% Alternatively, determine frequency of BS replacement based on actual no. of cycles
t_LA_rep = (t_LA/cycles_LA);
i_adj_LA = (((1+i)^t_LA_rep)/(1+f)^(t_LA_rep - 1)) - 1; % Adjusted nominal interest rate
PW_LA_rep = RC_LA * (((1+f)/(1+i_adj_LA))*(((1+f)/(1+i_adj_LA))^t_overall - 1))/(((1+f)/(1+i_adj_LA)) - 1);
% % DE replaced every 14 years
% i_adj_DE = (((1+i)^t_DE)/(1+f)^(t_DE - 1)) - 1; % Adjusted nominal interest rate
% PW_DE_rep = RC_DE * (((1+f)/(1+i_adj_DE))*(((1+f)/(1+i_adj_DE))^t_overall - 1))/(((1+f)/(1+i_adj_DE)) - 1);
% Alternatively, determine frequency of DE replacement based on actual no. of operating hours per year
t_DE_rep = (t_DE/sum(DE_ON)); % No. of years after which DE needs to be replaced
i_adj_DE = (((1+i)^t_DE_rep)/(1+f)^(t_DE_rep - 1)) - 1; % Adjusted nominal interest rate
PW_DE_rep = RC_DE * (((1+f)/(1+i_adj_DE))*(((1+f)/(1+i_adj_DE))^t_overall - 1))/(((1+f)/(1+i_adj_DE)) - 1);
% Present worth of non-recurring costs
PW_nonrec = PW_LA_rep + PW_DE_rep;
TNPC = IC + PW_rec + PW_nonrec; % Total (lifecycle) net present cost of system ($)
TAC = TNPC * CRF; % Total annualized cost ($)
LCOE = TAC/sum(sum(Load)); % Energy cost/Levelized cost of electricity ($/kWh) = total annual costs / total load served
% https://www.homerenergy.com/products/pro/docs/3.11/levelized_cost_of_energy.html
% Base case for LCOE same as that for emissions - entire MG is run solely on a single DE
% Total annual recurring costs each year
Var_OM_DE = Variable_OM_DE * 8760;
fuel_DE = 8760 * 0.08145 * P_DE_rated + 0.246 * sum(sum(Load));
C_fuel_DE = 3.20 * (fuel_DE / 3.78541);
DE_startup = SUC_DE;
DE_shutdown = SDC_DE;
C_rec = Fixed_OM_DE + Var_OM_DE + C_fuel_DE + DE_startup + DE_shutdown;
% Present worth of recurring costs
PW_rec = C_rec * (((1+f)/(1+i))*(((1+f)/(1+i))^t_overall - 1))/(((1+f)/(1+i)) - 1);
t_DE_rep = (t_DE/8760); % No. of years after which DE needs to be replaced
i_adj_DE = (((1+i)^t_DE_rep)/(1+f)^(t_DE_rep - 1)) - 1; % Adjusted nominal interest rate
PW_DE_rep = RC_DE * (((1+f)/(1+i_adj_DE))*(((1+f)/(1+i_adj_DE))^t_overall - 1))/(((1+f)/(1+i_adj_DE)) - 1);
% Present worth of non-recurring costs
PW_nonrec = PW_DE_rep;
IC = IC_DE; % Don't need inverter since DE can directly supply AC loads
TNPC = IC + PW_rec + PW_nonrec; % Total (lifecycle) net present cost of system ($)
TAC = TNPC * CRF; % Total annualized cost ($)
LCOE_base = TAC/sum(sum(Load)); % Energy cost/Levelized cost of electricity ($/kWh)
% Emissions factors - EPA database (all in g)
CO = 4.063288937 * sum(P_DE);
NOx = 18.85658039 * sum(P_DE);
SO2 = 0.007381439 * sum(P_DE);
VOC = 1.502443664 * sum(P_DE);
PM = 1.338208931 * sum(P_DE);
PM10 = 1.338208931 * sum(P_DE);
PM25 = 1.338208931 * sum(P_DE);
Emissions = CO2 + (CO + NOx + SO2 + VOC + PM + PM10 + PM25)/1000; % Total (kg)
% Reliability measure - % of load that's not not met
DPSP = sum(P_lost)/sum(sum(Load));
% Excess/dump energy as a fraction of total generation
E_gen = sum(P_DE * eta_rec + P_RES); % Total annual DC electrical energy output = P_gen * delta_t = P_gen (in kWh) since delta_t = 1 h
Dump = sum(P_dump)/E_gen;
% Dump power ratio to total generation
% OR relative excess power generated (= dump) ratio to total load
% Renewable penetration
REF = sum(P_RES)/E_gen;
Costs = [LCOE/LCOE_base Emissions/Emissions_base DPSP Dump 1-REF];
w = [0.2 0.2 0.2 0.2 0.2]; % Weights of different cost terms
cost = Costs * w';
end