-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
151 lines (125 loc) · 6.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from model import Generator
from model import Discriminator
import os
import re
class Utils:
def build_model(self):
"""Create a generator and a discriminator."""
self.G = Generator(self.g_conv_dim, self.c_dim,
self.g_repeat_num).to(self.device)
self.D = Discriminator(
self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num).to(self.device)
self.g_optimizer = torch.optim.Adam(
self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(
self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
# TODO: implement data parallelization for multiple gpus
# self.gpu_ids = torch.cuda.device_count()
# print("GPUS AVAILABLE: ", self.gpu_ids)
# if self.gpu_ids > 1:
# torch.nn.DataParallel(self.D, device_ids=list(range(self.gpu_ids)))
# torch.nn.DataParallel(self.G, device_ids=list(range(self.gpu_ids)))
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
self.logger = Logger(self.log_dir)
self.writer = SummaryWriter(logdir=self.log_dir)
def smooth_loss(self, att):
return torch.mean(torch.mean(torch.abs(att[:, :, :, :-1] - att[:, :, :, 1:])) +
torch.mean(torch.abs(att[:, :, :-1, :] - att[:, :, 1:, :])))
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def imFromAttReg(self, att, reg, x_real):
"""Mixes attention, color and real images"""
return (1-att)*reg + att*x_real
def create_labels(self, data_iter):
"""Return samples for visualization"""
x, c = [], []
x_data, c_data = data_iter.next()
for i in range(self.num_sample_targets):
x.append(x_data[i].repeat(
self.batch_size, 1, 1, 1).to(self.device))
c.append(c_data[i].repeat(self.batch_size, 1).to(self.device))
return x, c
def save_models(self, iteration, epoch):
try: # To avoid crashing on the first step
os.remove(os.path.join(self.model_save_dir,
'{}-{}-G.ckpt'.format(iteration+1-self.model_save_step, epoch)))
os.remove(os.path.join(self.model_save_dir,
'{}-{}-D.ckpt'.format(iteration+1-self.model_save_step, epoch)))
os.remove(os.path.join(self.model_save_dir,
'{}-{}-G_optim.ckpt'.format(iteration+1-self.model_save_step, epoch)))
os.remove(os.path.join(self.model_save_dir,
'{}-{}-D_optim.ckpt'.format(iteration+1-self.model_save_step, epoch)))
except:
pass
G_path = os.path.join(self.model_save_dir,
'{}-{}-G.ckpt'.format(iteration+1, epoch))
D_path = os.path.join(self.model_save_dir,
'{}-{}-D.ckpt'.format(iteration+1, epoch))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
G_path_optim = os.path.join(
self.model_save_dir, '{}-{}-G_optim.ckpt'.format(iteration+1, epoch))
D_path_optim = os.path.join(
self.model_save_dir, '{}-{}-D_optim.ckpt'.format(iteration+1, epoch))
torch.save(self.g_optimizer.state_dict(), G_path_optim)
torch.save(self.d_optimizer.state_dict(), D_path_optim)
print(f'Saved model checkpoints in {self.model_save_dir}...')
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}-{}...'.format(resume_iters, self.first_epoch))
G_path = os.path.join(
self.model_save_dir, '{}-{}-G.ckpt'.format(resume_iters, self.first_epoch))
D_path = os.path.join(
self.model_save_dir, '{}-{}-D.ckpt'.format(resume_iters, self.first_epoch))
self.G.load_state_dict(torch.load(
G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(
D_path, map_location=lambda storage, loc: storage))
G_optim_path = os.path.join(
self.model_save_dir, '{}-{}-G_optim.ckpt'.format(resume_iters, self.first_epoch))
D_optim_path = os.path.join(
self.model_save_dir, '{}-{}-D_optim.ckpt'.format(resume_iters, self.first_epoch))
self.d_optimizer.load_state_dict(torch.load(D_optim_path))
self.g_optimizer.load_state_dict(torch.load(G_optim_path))
def numericalSort(self, value):
numbers = re.compile(r'(\d+)')
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts