-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
418 lines (343 loc) · 14.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import argparse
import copy
import itertools
from os import path
import higher
import numpy as np
import torch
from sklearn.metrics import mean_absolute_error
from torch import autograd, optim
from torch.nn import DataParallel
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.tensorboard import SummaryWriter
from config import Config
from data.data_loader_train_lmdb import LMDBDataLoader
from data.load_test_sets_recognition import get_val_pair
from model.age_head import AgeHead
from model.gender_head import GenderHead
from model.model_wrapper import ModelWrapper
from model.race_head import RaceHead
from model.resnet import ResNet
from optimizer.early_stop import EarlyStop
from recognition import verification
from utils.model_loader import load_state, save_state
from utils.train_logger import TrainLogger
from utils.utils import separate_bn_param
class Train:
def __init__(self, config):
self.config = config
ATTR_HEAD = {
"race": RaceHead,
"gender": GenderHead,
"age": AgeHead,
"recognition": self.config.recognition_head,
}
self.writer = SummaryWriter(config.log_path)
if path.isfile(self.config.train_source):
self.train_loader = LMDBDataLoader(
config=self.config,
lmdb_path=self.config.train_source,
train=True,
use_mask=self.config.use_mask,
)
class_num = self.train_loader.class_num()
print(len(self.train_loader.dataset))
print(f"Classes: {class_num}")
self.model = ResNet(
self.config.depth, self.config.drop_ratio, self.config.net_mode
)
if self.config.attribute == "recognition":
self.head = ATTR_HEAD[self.config.attribute](
classnum=class_num, m=self.config.margin
)
else:
self.head = ATTR_HEAD[self.config.attribute](classnum=class_num)
self.full_model = ModelWrapper(self.model, self.head).to(self.config.device)
paras_only_bn, paras_wo_bn = separate_bn_param(self.model)
dummy_input = torch.zeros(1, 3, 112, 112).to(self.config.device)
self.writer.add_graph(self.full_model, dummy_input)
if torch.cuda.device_count() > 1:
print(f"Model will use {torch.cuda.device_count()} GPUs!")
self.full_model = DataParallel(self.full_model)
self.weights = None
if self.config.attribute in ["race", "gender"]:
_, self.weights = np.unique(
self.train_loader.dataset.get_targets(), return_counts=True
)
self.weights = np.max(self.weights) / self.weights
self.weights = torch.tensor(
self.weights, dtype=torch.float, device=self.config.device
)
self.config.weights = self.weights
print(self.weights)
self.config.loss = self.config.loss(weight=self.weights)
if self.config.val_source is not None:
if self.config.attribute != "recognition":
if path.isfile(self.config.val_source):
self.val_loader = LMDBDataLoader(
config=self.config,
lmdb_path=self.config.val_source,
train=False,
use_mask=self.config.use_mask,
)
else:
self.validation_list = []
for val_name in config.val_list:
dataset, issame = get_val_pair(self.config.val_source, val_name)
self.validation_list.append([dataset, issame, val_name])
self.optimizer = optim.SGD(
[
{"params": paras_wo_bn, "weight_decay": self.config.weight_decay},
{
"params": self.head.parameters(),
"weight_decay": self.config.weight_decay,
},
{"params": paras_only_bn},
],
lr=self.config.lr,
momentum=self.config.momentum,
)
if self.config.resume:
print(f"Resuming training from {self.config.resume}")
load_state(self.full_model, self.optimizer, self.config.resume, False)
if self.config.pretrained:
print(f"Loading pretrained weights from {self.config.pretrained}")
load_state(
full_model=self.full_model,
optimizer=None,
path_to_model=self.config.pretrained,
model_only=True,
load_head=self.config.attribute != "recognition",
)
print(self.config)
self.save_file(self.config, "config.txt")
print(self.optimizer)
self.save_file(self.optimizer, "optimizer.txt")
self.tensorboard_loss_every = max(len(self.train_loader) // 100, 1)
self.evaluate_every = max(len(self.train_loader) // 5, 1)
if self.config.lr_plateau:
self.scheduler = ReduceLROnPlateau(
self.optimizer,
mode=self.config.max_or_min,
factor=0.1,
patience=3,
verbose=True,
threshold=0.001,
cooldown=1,
)
if self.config.early_stop:
self.early_stop = EarlyStop(mode=self.config.max_or_min)
def run(self):
self.full_model.train()
running_loss = 0.0
step = 0
val_acc = 0.0
best_step = 0
best_acc = float("Inf")
if self.config.max_or_min == "max":
best_acc *= -1
for epoch in range(self.config.epochs):
train_logger = TrainLogger(
self.config.batch_size, self.config.frequency_log
)
if epoch + 1 in self.config.reduce_lr and not self.config.lr_plateau:
self.reduce_lr()
for idx, data in enumerate(self.train_loader):
imgs, labels = data
imgs = imgs.to(self.config.device)
labels = labels.to(self.config.device)
self.optimizer.zero_grad()
if self.config.attribute == "recognition":
outputs = self.full_model(imgs, labels)
else:
outputs = self.full_model(imgs)
loss = self.config.loss(outputs, labels)
loss.backward()
running_loss += loss.item()
self.optimizer.step()
if step % self.tensorboard_loss_every == 0:
loss_board = running_loss / self.tensorboard_loss_every
self.writer.add_scalar("train_loss", loss_board, step)
running_loss = 0.0
if step % self.evaluate_every == 0 and step != 0:
if self.config.val_source is not None:
val_acc, _ = self.evaluate(step)
self.full_model.train()
best_acc, best_step = self.save_model(
val_acc, best_acc, step, best_step
)
print(f"Best accuracy: {best_acc:.5f} at step {best_step}")
else:
save_state(
self.full_model, self.optimizer, self.config, 0, step
)
train_logger(
epoch, self.config.epochs, idx, len(self.train_loader), loss.item()
)
step += 1
if self.config.lr_plateau:
self.scheduler.step(val_acc)
if self.config.early_stop:
self.early_stop(val_acc)
if self.early_stop.stop:
print("Early stopping model...")
break
val_acc, val_loss = self.evaluate(step)
best_acc = self.save_model(val_acc, best_acc, step, best_step)
print(f"Best accuracy: {best_acc} at step {best_step}")
def save_model(self, val_acc, best_acc, step, best_step):
if (self.config.max_or_min == "max" and val_acc > best_acc) or (
self.config.max_or_min == "min" and val_acc < best_acc
):
best_acc = val_acc
best_step = step
save_state(self.full_model, self.optimizer, self.config, val_acc, step)
return best_acc, best_step
def reduce_lr(self):
for params in self.optimizer.param_groups:
params["lr"] /= 10
print(self.optimizer)
def tensorboard_val(self, accuracy, step, loss=0, dataset=""):
self.writer.add_scalar("{}val_acc".format(dataset), accuracy, step)
if self.config.attribute != "recognition":
self.writer.add_scalar("val_loss", loss, step)
def evaluate(self, step):
if self.config.attribute != "recognition":
val_acc, val_loss = self.evaluate_attribute()
self.tensorboard_val(val_acc, step, val_loss)
elif self.config.attribute == "recognition":
val_loss = 0
val_acc = 0
print("Validating...")
for idx, validation in enumerate(self.validation_list):
dataset, issame, val_name = validation
acc, std = self.evaluate_recognition(dataset, issame)
self.tensorboard_val(acc, step, dataset=f"{val_name}_")
print(f"{val_name}: {acc:.5f}+-{std:.5f}")
val_acc += acc
val_acc /= idx + 1
self.tensorboard_val(val_acc, step)
print(f"Mean accuracy: {val_acc:.5f}")
return val_acc, val_loss
def evaluate_attribute(self):
self.full_model.eval()
y_true = torch.tensor(
[], dtype=self.config.output_type, device=self.config.device
)
all_outputs = torch.tensor([], device=self.config.device)
with torch.no_grad():
for imgs, labels in iter(self.val_loader):
imgs = imgs.to(self.config.device)
labels = labels.to(self.config.device)
outputs = self.full_model(imgs)
y_true = torch.cat((y_true, labels), 0)
all_outputs = torch.cat((all_outputs, outputs), 0)
if self.weights is not None:
loss = round(self.config.loss(all_outputs, y_true).item(), 4)
else:
loss = round(self.config.loss(all_outputs, y_true).item(), 4)
y_true = y_true.cpu().numpy()
if self.config.attribute == "age":
y_pred = all_outputs.cpu().numpy()
y_pred = np.round(y_pred, 0)
y_pred = np.sum(y_pred, axis=1)
y_true = np.sum(y_true, axis=1)
accuracy = round(mean_absolute_error(y_true, y_pred), 4)
else:
_, y_pred = torch.max(all_outputs, 1)
y_pred = y_pred.cpu().numpy()
accuracy = round(np.sum(y_true == y_pred) / len(y_pred), 4)
return accuracy, loss
def evaluate_recognition(self, samples, issame, nrof_folds=10, tta=False):
self.full_model.eval()
idx = 0
embeddings = np.zeros([len(samples), self.config.embedding_size])
with torch.no_grad():
for idx in range(0, len(samples), self.config.batch_size):
batch = torch.tensor(samples[idx : idx + self.config.batch_size])
embeddings[
idx : idx + self.config.batch_size
] = self.full_model.module.model(batch.to(self.config.device)).cpu()
idx += self.config.batch_size
tpr, fpr, accuracy, best_thresholds = verification.evaluate(
embeddings, issame, nrof_folds
)
return round(accuracy.mean(), 5), round(accuracy.std(), 5)
def save_file(self, string, file_name):
file = open(path.join(self.config.work_path, file_name), "w")
file.write(str(string))
file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a race, gender, age or recognition models."
)
# network and training parameters
parser.add_argument(
"--epochs", "-e", help="Number of epochs.", default=30, type=int
)
parser.add_argument(
"--net_mode", "-n", help="Residual type [ir, ir_se].", default="ir_se", type=str
)
parser.add_argument(
"--depth", "-d", help="Number of layers [50, 100, 152].", default=50, type=int
)
parser.add_argument("--lr", "-lr", help="Learning rate.", default=0.001, type=float)
parser.add_argument("--batch_size", "-b", help="Batch size.", default=384, type=int)
parser.add_argument(
"--lr_plateau", "-lrp", help="Reduce lr on plateau.", action="store_true"
)
parser.add_argument(
"--early_stop", "-es", help="Use early stop.", action="store_true"
)
parser.add_argument(
"--multi_gpu", "-m", help="Use multi gpus.", action="store_true"
)
parser.add_argument("--workers", "-w", help="Workers number.", default=4, type=int)
parser.add_argument(
"--num_classes", "-nc", help="Number of classes.", default=85742, type=int
)
# training/validation configuration
parser.add_argument("--train_list", "-t", help="List of images to train.")
parser.add_argument(
"--val_list",
"-v",
help="List of images to validate, or datasets to validate (recognition).",
default=["agedb_30", "cfp_fp", "lfw"],
)
parser.add_argument(
"--train_source", "-ts", help="Path to the train images, or dataset LMDB file."
)
parser.add_argument(
"--val_source", "-vs", help="Path to the val images, or dataset LMDB file."
)
parser.add_argument(
"--attribute",
"-a",
help="Which attribute to train [race, gender, age, recognition].",
type=str,
)
parser.add_argument(
"--head",
"-hd",
help="If recognition, which head to use [arcface, cosface, adacos].",
type=str,
)
parser.add_argument("--margin", "-margin", help="Margin", default=0.5, type=float)
parser.add_argument("--prefix", "-p", help="Prefix to save the model.", type=str)
# resume from or load pretrained weights
parser.add_argument(
"--pretrained", "-pt", help="Path to pretrained weights.", type=str
)
parser.add_argument(
"--resume", "-r", help="Path to load model to resume training.", type=str
)
# use masks to focus on face
parser.add_argument(
"--use_mask", "-us", help="Mask images with masks.", action="store_true"
)
args = parser.parse_args()
config = Config(args)
torch.manual_seed(0)
np.random.seed(0)
train = Train(config)
train.run()