Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Unable to run Phi4 with tensor-parallel-size 4 torch.compile compatiblity #16021

Open
1 task done
roguetech opened this issue Apr 3, 2025 · 3 comments
Open
1 task done
Labels
bug Something isn't working

Comments

@roguetech
Copy link

Your current environment

INFO 04-03 15:28:10 [init.py:256] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.8.0-1024-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.5.82
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10G
GPU 1: NVIDIA A10G
GPU 2: NVIDIA A10G
GPU 3: NVIDIA A10G

Nvidia driver version: 555.42.06
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 0
BogoMIPS: 5599.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 12 MiB (24 instances)
L3 cache: 96 MiB (6 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.0.dev0
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-47 0 N/A
GPU1 PHB X PHB PHB 0-47 0 N/A
GPU2 PHB PHB X PHB 0-47 0 N/A
GPU3 PHB PHB PHB X 0-47 0 N/A

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

NCCL_P2P_DISABLE=1
LD_LIBRARY_PATH=/usr/local/cuda-12.5/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

running the following results in the below:

python3 -m vllm.entrypoints.openai.api_server --model microsoft/phi-4 --gpu-memory-utilization 0.90 --max-model-len 16000 --disable-log-requests --tensor-parallel-size 4

INFO 04-03 15:23:00 [init.py:256] Automatically detected platform cuda.
INFO 04-03 15:23:02 [api_server.py:977] vLLM API server version 0.8.1
INFO 04-03 15:23:02 [api_server.py:978] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=[''], allowed_methods=[''], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='microsoft/phi-4', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=16000, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=4, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_log_requests=True, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False)
config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 802/802 [00:00<00:00, 12.3MB/s]
INFO 04-03 15:23:08 [config.py:583] This model supports multiple tasks: {'reward', 'classify', 'score', 'embed', 'generate'}. Defaulting to 'generate'.
INFO 04-03 15:23:09 [config.py:1515] Defaulting to use mp for distributed inference
INFO 04-03 15:23:09 [config.py:1693] Chunked prefill is enabled with max_num_batched_tokens=2048.
tokenizer_config.json: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████| 17.7k/17.7k [00:00<00:00, 141MB/s]
vocab.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.61M/1.61M [00:00<00:00, 65.7MB/s]
merges.txt: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 917k/917k [00:00<00:00, 35.6MB/s]
tokenizer.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4.25M/4.25M [00:00<00:00, 79.1MB/s]
added_tokens.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.50k/2.50k [00:00<00:00, 49.1MB/s]
special_tokens_map.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████| 95.0/95.0 [00:00<00:00, 1.95MB/s]
generation_config.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 156/156 [00:00<00:00, 2.97MB/s]
INFO 04-03 15:23:11 [core.py:53] Initializing a V1 LLM engine (v0.8.1) with config: model='microsoft/phi-4', speculative_config=None, tokenizer='microsoft/phi-4', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=16000, download_dir=None, load_format=auto, tensor_parallel_size=4, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=microsoft/phi-4, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
WARNING 04-03 15:23:11 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 24 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
INFO 04-03 15:23:11 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1, 2, 3], buffer_handle=(4, 10485760, 10, 'psm_fe6243c6'), local_subscribe_addr='ipc:///tmp/a1df557c-8758-424f-86bf-0388b32e971e', remote_subscribe_addr=None, remote_addr_ipv6=False)
WARNING 04-03 15:23:12 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x79bf1037ec20>
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:12 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_15babbc7'), local_subscribe_addr='ipc:///tmp/3f914a99-dbac-4af6-8281-84404d56958d', remote_subscribe_addr=None, remote_addr_ipv6=False)
WARNING 04-03 15:23:12 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x79bf1037ec50>
(VllmWorker rank=1 pid=4372) INFO 04-03 15:23:12 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_c58392db'), local_subscribe_addr='ipc:///tmp/9dff411b-97fa-4ca7-8cef-d8c24d835315', remote_subscribe_addr=None, remote_addr_ipv6=False)
WARNING 04-03 15:23:13 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x79bf1037e2c0>
(VllmWorker rank=2 pid=4396) INFO 04-03 15:23:13 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_9cb45ffa'), local_subscribe_addr='ipc:///tmp/00224184-d3bf-4270-a4f8-80914d393503', remote_subscribe_addr=None, remote_addr_ipv6=False)
WARNING 04-03 15:23:13 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x79bf1037ec50>
(VllmWorker rank=3 pid=4411) INFO 04-03 15:23:13 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_28187e6a'), local_subscribe_addr='ipc:///tmp/af52adbf-b1d1-430d-8824-65322c95998d', remote_subscribe_addr=None, remote_addr_ipv6=False)
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:14 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=3 pid=4411) INFO 04-03 15:23:14 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:14 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=3 pid=4411) INFO 04-03 15:23:14 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=1 pid=4372) INFO 04-03 15:23:14 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=1 pid=4372) INFO 04-03 15:23:14 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=2 pid=4396) INFO 04-03 15:23:14 [utils.py:925] Found nccl from library libnccl.so.2
(VllmWorker rank=2 pid=4396) INFO 04-03 15:23:14 [pynccl.py:69] vLLM is using nccl==2.21.5
(VllmWorker rank=2 pid=4396) WARNING 04-03 15:23:14 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=3 pid=4411) WARNING 04-03 15:23:14 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=1 pid=4372) WARNING 04-03 15:23:14 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=0 pid=4360) WARNING 04-03 15:23:14 [custom_all_reduce.py:137] Custom allreduce is disabled because it's not supported on more than two PCIe-only GPUs. To silence this warning, specify disable_custom_all_reduce=True explicitly.
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:14 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[1, 2, 3], buffer_handle=(3, 4194304, 6, 'psm_6de8e61d'), local_subscribe_addr='ipc:///tmp/1fab129a-7306-4549-83dc-7ed7ac0e8597', remote_subscribe_addr=None, remote_addr_ipv6=False)
(VllmWorker rank=3 pid=4411) INFO 04-03 15:23:14 [parallel_state.py:967] rank 3 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 3
(VllmWorker rank=2 pid=4396) INFO 04-03 15:23:14 [parallel_state.py:967] rank 2 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 2
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:14 [parallel_state.py:967] rank 0 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 0
(VllmWorker rank=2 pid=4396) INFO 04-03 15:23:14 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=3 pid=4411) INFO 04-03 15:23:14 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:14 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=1 pid=4372) INFO 04-03 15:23:14 [parallel_state.py:967] rank 1 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 1
(VllmWorker rank=1 pid=4372) INFO 04-03 15:23:14 [cuda.py:215] Using Flash Attention backend on V1 engine.
(VllmWorker rank=2 pid=4396) INFO 04-03 15:23:14 [gpu_model_runner.py:1164] Starting to load model microsoft/phi-4...
(VllmWorker rank=3 pid=4411) INFO 04-03 15:23:14 [gpu_model_runner.py:1164] Starting to load model microsoft/phi-4...
(VllmWorker rank=1 pid=4372) INFO 04-03 15:23:14 [gpu_model_runner.py:1164] Starting to load model microsoft/phi-4...
(VllmWorker rank=0 pid=4360) INFO 04-03 15:23:14 [gpu_model_runner.py:1164] Starting to load model microsoft/phi-4...
(VllmWorker rank=1 pid=4372) WARNING 04-03 15:23:14 [config.py:3670] torch.compile is turned on, but the model microsoft/phi-4 does not support it. Please open an issue on GitHub if you want it to be supported.
(VllmWorker rank=3 pid=4411) WARNING 04-03 15:23:14 [config.py:3670] torch.compile is turned on, but the model microsoft/phi-4 does not support it. Please open an issue on GitHub if you want it to be supported.
(VllmWorker rank=2 pid=4396) WARNING 04-03 15:23:14 [config.py:3670] torch.compile is turned on, but the model microsoft/phi-4 does not support it. Please open an issue on GitHub if you want it to be supported.
(VllmWorker rank=0 pid=4360) WARNING 04-03 15:23:14 [config.py:3670] torch.compile is turned on, but the model microsoft/phi-4 does not support it. Please open an issue on GitHub if you want it to be supported.
(VllmWorker rank=2 pid=4396) Process ForkProcess-1:3:
CRITICAL 04-03 15:23:14 [multiproc_executor.py:48] MulitprocExecutor got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
(VllmWorker rank=0 pid=4360) Process ForkProcess-1:1:
CRITICAL 04-03 15:23:14 [multiproc_executor.py:48] MulitprocExecutor got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
CRITICAL 04-03 15:23:14 [core_client.py:269] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
(VllmWorker rank=2 pid=4396) Traceback (most recent call last):
(VllmWorker rank=2 pid=4396) File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorker rank=2 pid=4396) self.run()
(VllmWorker rank=2 pid=4396) File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorker rank=2 pid=4396) self._target(*self._args, **self._kwargs)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 311, in worker_main
(VllmWorker rank=2 pid=4396) worker = WorkerProc(*args, **kwargs)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 244, in init
(VllmWorker rank=2 pid=4396) self.worker.load_model()
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_worker.py", line 136, in load_model
(VllmWorker rank=2 pid=4396) self.model_runner.load_model()
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1167, in load_model
(VllmWorker rank=2 pid=4396) self.model = get_model(vllm_config=self.vllm_config)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/init.py", line 14, in get_model
(VllmWorker rank=2 pid=4396) return loader.load_model(vllm_config=vllm_config)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 423, in load_model
(VllmWorker rank=2 pid=4396) model = _initialize_model(vllm_config=vllm_config)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 126, in _initialize_model
(VllmWorker rank=3 pid=4411) Process ForkProcess-1:4:
(VllmWorker rank=2 pid=4396) return model_class(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 480, in init
CRITICAL 04-03 15:23:14 [multiproc_executor.py:48] MulitprocExecutor got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
(VllmWorker rank=2 pid=4396) self.model = self._init_model(vllm_config=vllm_config,
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 517, in _init_model
(VllmWorker rank=2 pid=4396) return LlamaModel(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/compilation/decorators.py", line 151, in init
(VllmWorker rank=2 pid=4396) old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 319, in init
(VllmWorker rank=2 pid=4396) self.start_layer, self.end_layer, self.layers = make_layers(
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 557, in make_layers
(VllmWorker rank=2 pid=4396) [PPMissingLayer() for _ in range(start_layer)] + [
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 558, in
(VllmWorker rank=2 pid=4396) maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 321, in
(VllmWorker rank=2 pid=4396) lambda prefix: layer_type(config=config,
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 237, in init
(VllmWorker rank=2 pid=4396) self.self_attn = LlamaAttention(
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 122, in init
(VllmWorker rank=1 pid=4372) Process ForkProcess-1:2:
(VllmWorker rank=2 pid=4396) assert self.total_num_kv_heads % tp_size == 0
(VllmWorker rank=2 pid=4396) AssertionError
CRITICAL 04-03 15:23:14 [multiproc_executor.py:48] MulitprocExecutor got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
(VllmWorker rank=0 pid=4360) Traceback (most recent call last):
(VllmWorker rank=0 pid=4360) File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorker rank=0 pid=4360) self.run()
(VllmWorker rank=0 pid=4360) File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorker rank=0 pid=4360) self._target(*self._args, **self._kwargs)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 311, in worker_main
(VllmWorker rank=0 pid=4360) worker = WorkerProc(*args, **kwargs)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 244, in init
(VllmWorker rank=0 pid=4360) self.worker.load_model()
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_worker.py", line 136, in load_model
(VllmWorker rank=0 pid=4360) self.model_runner.load_model()
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1167, in load_model
(VllmWorker rank=0 pid=4360) self.model = get_model(vllm_config=self.vllm_config)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/init.py", line 14, in get_model
(VllmWorker rank=0 pid=4360) return loader.load_model(vllm_config=vllm_config)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 423, in load_model
(VllmWorker rank=0 pid=4360) model = _initialize_model(vllm_config=vllm_config)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 126, in _initialize_model
(VllmWorker rank=0 pid=4360) return model_class(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 480, in init
(VllmWorker rank=0 pid=4360) self.model = self._init_model(vllm_config=vllm_config,
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 517, in _init_model
(VllmWorker rank=0 pid=4360) return LlamaModel(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/compilation/decorators.py", line 151, in init
(VllmWorker rank=0 pid=4360) old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 319, in init
(VllmWorker rank=0 pid=4360) self.start_layer, self.end_layer, self.layers = make_layers(
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 557, in make_layers
(VllmWorker rank=0 pid=4360) [PPMissingLayer() for _ in range(start_layer)] + [
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 558, in
(VllmWorker rank=0 pid=4360) maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 321, in
(VllmWorker rank=0 pid=4360) lambda prefix: layer_type(config=config,
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 237, in init
(VllmWorker rank=0 pid=4360) self.self_attn = LlamaAttention(
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 122, in init
(VllmWorker rank=0 pid=4360) assert self.total_num_kv_heads % tp_size == 0
(VllmWorker rank=0 pid=4360) AssertionError
CRITICAL 04-03 15:23:14 [core_client.py:269] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue.
(VllmWorker rank=3 pid=4411) Traceback (most recent call last):
(VllmWorker rank=3 pid=4411) File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorker rank=3 pid=4411) self.run()
(VllmWorker rank=3 pid=4411) File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorker rank=3 pid=4411) self._target(*self._args, **self._kwargs)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 311, in worker_main
(VllmWorker rank=3 pid=4411) worker = WorkerProc(*args, **kwargs)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 244, in init
(VllmWorker rank=3 pid=4411) self.worker.load_model()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_worker.py", line 136, in load_model
(VllmWorker rank=3 pid=4411) self.model_runner.load_model()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1167, in load_model
(VllmWorker rank=3 pid=4411) self.model = get_model(vllm_config=self.vllm_config)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/init.py", line 14, in get_model
(VllmWorker rank=3 pid=4411) return loader.load_model(vllm_config=vllm_config)
(VllmWorker rank=1 pid=4372) Traceback (most recent call last):
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 423, in load_model
(VllmWorker rank=3 pid=4411) model = _initialize_model(vllm_config=vllm_config)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 126, in _initialize_model
(VllmWorker rank=3 pid=4411) return model_class(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 480, in init
(VllmWorker rank=3 pid=4411) self.model = self._init_model(vllm_config=vllm_config,
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 517, in _init_model
(VllmWorker rank=1 pid=4372) File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorker rank=3 pid=4411) return LlamaModel(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=1 pid=4372) self.run()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/compilation/decorators.py", line 151, in init
(VllmWorker rank=1 pid=4372) File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorker rank=3 pid=4411) old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
(VllmWorker rank=1 pid=4372) self._target(*self._args, **self._kwargs)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 319, in init
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 311, in worker_main
(VllmWorker rank=3 pid=4411) self.start_layer, self.end_layer, self.layers = make_layers(
(VllmWorker rank=1 pid=4372) worker = WorkerProc(*args, **kwargs)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 557, in make_layers
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 244, in init
(VllmWorker rank=3 pid=4411) [PPMissingLayer() for _ in range(start_layer)] + [
(VllmWorker rank=1 pid=4372) self.worker.load_model()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 558, in
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_worker.py", line 136, in load_model
(VllmWorker rank=3 pid=4411) maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
(VllmWorker rank=1 pid=4372) self.model_runner.load_model()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 321, in
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1167, in load_model
(VllmWorker rank=3 pid=4411) lambda prefix: layer_type(config=config,
(VllmWorker rank=1 pid=4372) self.model = get_model(vllm_config=self.vllm_config)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 237, in init
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/init.py", line 14, in get_model
(VllmWorker rank=3 pid=4411) self.self_attn = LlamaAttention(
(VllmWorker rank=1 pid=4372) return loader.load_model(vllm_config=vllm_config)
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 122, in init
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 423, in load_model
(VllmWorker rank=3 pid=4411) assert self.total_num_kv_heads % tp_size == 0
(VllmWorker rank=1 pid=4372) model = _initialize_model(vllm_config=vllm_config)
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 126, in _initialize_model
(VllmWorker rank=3 pid=4411) AssertionError
(VllmWorker rank=1 pid=4372) return model_class(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 480, in init
(VllmWorker rank=1 pid=4372) self.model = self._init_model(vllm_config=vllm_config,
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 517, in _init_model
(VllmWorker rank=1 pid=4372) return LlamaModel(vllm_config=vllm_config, prefix=prefix)
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/compilation/decorators.py", line 151, in init
(VllmWorker rank=1 pid=4372) old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 319, in init
(VllmWorker rank=1 pid=4372) self.start_layer, self.end_layer, self.layers = make_layers(
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 557, in make_layers
(VllmWorker rank=1 pid=4372) [PPMissingLayer() for _ in range(start_layer)] + [
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/utils.py", line 558, in
(VllmWorker rank=1 pid=4372) maybe_offload_to_cpu(layer_fn(prefix=f"{prefix}.{idx}"))
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 321, in
(VllmWorker rank=1 pid=4372) lambda prefix: layer_type(config=config,
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 237, in init
(VllmWorker rank=1 pid=4372) self.self_attn = LlamaAttention(
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/model_executor/models/llama.py", line 122, in init
(VllmWorker rank=1 pid=4372) assert self.total_num_kv_heads % tp_size == 0
(VllmWorker rank=1 pid=4372) AssertionError
(VllmWorker rank=1 pid=4372) Exception ignored in: <function ShmRingBuffer.del at 0x79bf1034b7f0>
(VllmWorker rank=1 pid=4372) Traceback (most recent call last):
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/distributed/device_communicators/shm_broadcast.py", line 148, in del
(VllmWorker rank=3 pid=4411) Exception ignored in: <function Context.del at 0x79bf970e7910>
(VllmWorker rank=3 pid=4411) Traceback (most recent call last):
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/zmq/sugar/context.py", line 140, in del
(VllmWorker rank=1 pid=4372) self.shared_memory.close()
(VllmWorker rank=1 pid=4372) File "/usr/lib/python3.10/multiprocessing/shared_memory.py", line 230, in close
(VllmWorker rank=3 pid=4411) self.destroy()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/zmq/sugar/context.py", line 322, in destroy
(VllmWorker rank=3 pid=4411) self.term()
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/zmq/sugar/context.py", line 264, in term
(VllmWorker rank=3 pid=4411) super().term()
(VllmWorker rank=3 pid=4411) File "_zmq.py", line 564, in zmq.backend.cython._zmq.Context.term
(VllmWorker rank=3 pid=4411) File "_zmq.py", line 160, in zmq.backend.cython._zmq._check_rc
(VllmWorker rank=3 pid=4411) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 303, in signal_handler
(VllmWorker rank=3 pid=4411) raise SystemExit()
(VllmWorker rank=3 pid=4411) SystemExit:
(VllmWorker rank=1 pid=4372) self._mmap.close()
(VllmWorker rank=1 pid=4372) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 303, in signal_handler
(VllmWorker rank=1 pid=4372) raise SystemExit()
(VllmWorker rank=1 pid=4372) SystemExit:
(VllmWorker rank=2 pid=4396) Exception ignored in: <function Socket.del at 0x79bf970e63b0>
(VllmWorker rank=2 pid=4396) Traceback (most recent call last):
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/zmq/sugar/socket.py", line 184, in del
(VllmWorker rank=2 pid=4396) def del(self):
(VllmWorker rank=2 pid=4396) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 303, in signal_handler
(VllmWorker rank=2 pid=4396) raise SystemExit()
(VllmWorker rank=2 pid=4396) SystemExit:
(VllmWorker rank=0 pid=4360) Exception ignored in: <function Socket.del at 0x79bf970e63b0>
(VllmWorker rank=0 pid=4360) Traceback (most recent call last):
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/zmq/sugar/socket.py", line 184, in del
(VllmWorker rank=0 pid=4360) def del(self):
(VllmWorker rank=0 pid=4360) File "/home/ubuntu/.local/lib/python3.10/site-packages/vllm/v1/executor/multiproc_executor.py", line 303, in signal_handler
(VllmWorker rank=0 pid=4360) raise SystemExit()
(VllmWorker rank=0 pid=4360) SystemExit:
Killed

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@roguetech roguetech added the bug Something isn't working label Apr 3, 2025
@vsenik
Copy link

vsenik commented Apr 8, 2025

Could be started with pipeline-parallel.
python3 -m vllm.entrypoints.openai.api_server --model microsoft/phi-4 --gpu-memory-utilization 0.90 --max-model-len 16000 --disable-log-requests --pipeline-parallel-size 4

@OmarMohammed88
Copy link

Could be started with pipeline-parallel. python3 -m vllm.entrypoints.openai.api_server --model microsoft/phi-4 --gpu-memory-utilization 0.90 --max-model-len 16000 --disable-log-requests --pipeline-parallel-size 4

@vsenik Do u know how to use it using the standard loading ,
This is my code and gives me same error

    llm = VLLM(
        model='microsoft/phi-4',
        tensor_parallel_size=4,
        trust_remote_code=True,  # mandatory for hf models
        max_new_tokens=16000,
    )

@vsenik
Copy link

vsenik commented Apr 9, 2025

You have problem because model couldn't be started with tensor_parallel on 4 device, you could choose 2 or 8. If you want to use exactly 4 devices you should switch to pipeline_parallel. Here difference explained

llm = VLLM(
    model='microsoft/phi-4',
    **tensor_parallel_size**=4,
    trust_remote_code=True,  # mandatory for hf models
    max_new_tokens=16000,
)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

3 participants