Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Two beginning of sequence tokens for Lllama-3.2-3B-Instruct #16028

Open
1 task done
Naqu6 opened this issue Apr 3, 2025 · 1 comment · May be fixed by #16081
Open
1 task done

[Bug]: Two beginning of sequence tokens for Lllama-3.2-3B-Instruct #16028

Naqu6 opened this issue Apr 3, 2025 · 1 comment · May be fixed by #16081
Labels
bug Something isn't working

Comments

@Naqu6
Copy link

Naqu6 commented Apr 3, 2025

Your current environment

Two BOS tokens returned by VLLM

Here's my env:

Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31

Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-187-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA L40S
GPU 1: NVIDIA L40S
GPU 2: NVIDIA L40S
GPU 3: NVIDIA L40S
GPU 4: NVIDIA L40S
GPU 5: NVIDIA L40S
GPU 6: NVIDIA L40S
GPU 7: NVIDIA L40S

Nvidia driver version: 550.54.14
cuDNN version: Probably one of the following:
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8.4.1
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.4.1
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.4.1
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.4.1
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.4.1
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.4.1
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.4.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.4.1
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.4.1
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      52 bits physical, 57 bits virtual
CPU(s):                             128
On-line CPU(s) list:                0-127
Thread(s) per core:                 2
Core(s) per socket:                 32
Socket(s):                          2
NUMA node(s):                       2
Vendor ID:                          AuthenticAMD
CPU family:                         25
Model:                              17
Model name:                         AMD EPYC 9334 32-Core Processor
Stepping:                           1
Frequency boost:                    enabled
CPU MHz:                            1499.783
CPU max MHz:                        2700.0000
CPU min MHz:                        1500.0000
BogoMIPS:                           5400.03
Virtualization:                     AMD-V
L1d cache:                          2 MiB
L1i cache:                          2 MiB
L2 cache:                           64 MiB
L3 cache:                           256 MiB
NUMA node0 CPU(s):                  0-31,64-95
NUMA node1 CPU(s):                  32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca flush_l1d

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.3
[pip3] triton==3.2.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.3.0                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.50.3                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      SYS     SYS     SYS     SYS     SYS     SYS     SYS     SYS     0-31,64-95      0               N/A
GPU1    SYS      X      SYS     SYS     SYS     SYS     SYS     SYS     SYS     0-31,64-95      0               N/A
GPU2    SYS     SYS      X      SYS     SYS     SYS     SYS     SYS     SYS     0-31,64-95      0               N/A
GPU3    SYS     SYS     SYS      X      SYS     SYS     SYS     SYS     SYS     0-31,64-95      0               N/A
GPU4    SYS     SYS     SYS     SYS      X      SYS     SYS     SYS     SYS     32-47,96-111    1               N/A
GPU5    SYS     SYS     SYS     SYS     SYS      X      SYS     SYS     SYS     32-47,96-111    1               N/A
GPU6    SYS     SYS     SYS     SYS     SYS     SYS      X      SYS     PHB     32-47,96-111    1               N/A
GPU7    SYS     SYS     SYS     SYS     SYS     SYS     SYS      X      SYS     32-47,96-111    1               N/A
NIC0    SYS     SYS     SYS     SYS     SYS     SYS     PHB     SYS      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

VLLM output includes two beginning of sequence tokens (128000) rather than one for Llama 3b in the prompt_token_ids field of the output:

from vllm import LLM
model = LLM(
    model="meta-llama/Llama-3.2-3B-Instruct",
)
messages = [[{"role": "system", "content":"This is a prompt"}, {"role": "user", "content": "User message"}]]
vllm_out = model.chat(
    messages,
    SamplingParams(),
)
print(vllm_out[0].prompt_token_ids)
> [128000, 128000, 128006, 9125, 128007, 271, 38766, 1303, 33025, 2696, 25, 6790, 220, 2366, 18, 198, 15724, 2696, 25, 220, 2839, 5186, 220, 2366, 20, 271, 2028, 374, 264, 1633, 1633, 1317, 10137, 13, 128009, 128006, 882, 128007, 271, 1502, 1984, 128009, 128006, 78191, 128007, 271]

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
print(tokenizer.apply_chat_template(messages))
> [[128000, 128006, 9125, 128007, 271, 38766, 1303, 33025, 2696, 25, 6790, 220, 2366, 18, 198, 15724, 2696, 25, 220, 2839, 5186, 220, 2366, 20, 271, 2028, 374, 264, 10137, 128009, 128006, 882, 128007, 271, 1502, 1984, 128009]]

See that print(vllm_out[0].prompt_token_ids) has two 128000 tokens while the tokenizers one only has one.

Maybe I'm misreading/misunderstanding the outputs, but I read the docs and coudln't find anything.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@Naqu6 Naqu6 added the bug Something isn't working label Apr 3, 2025
@chaunceyjiang
Copy link
Contributor

I can try to fix this issue.

@njhill njhill linked a pull request Apr 5, 2025 that will close this issue
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants