-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_data.py
29 lines (23 loc) · 915 Bytes
/
make_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import glob2
import random
import numpy as np
from sklearn.model_selection import train_test_split
wav_file_list = glob2.glob(f"/mnt/data1/waris/datasets/data/arctic_dataset/all_data_for_ac_vc_train/**/*.wav")
ids = []
for t in wav_file_list:
spkr = t.split('.')[0].split('/')[-3]
fid = t.split('.')[0].split('/')[-1]
wav = t.split('.')[0].split('/')[-2]
# with open('/path/to/filename.txt', mode='wt', encoding='utf-8') as myfile:
ids.append(f'{spkr}/{fid}')
ids = np.array(ids)
np.random.shuffle(ids)
data_train, data_test, labels_train, labels_test = train_test_split(ids, ids, test_size=0.05, random_state=42)
with open('train.txt', mode='wt', encoding='utf-8') as myfile:
for s in data_train:
myfile.write(s)
myfile.write('\n')
with open('dev.txt', mode='wt', encoding='utf-8') as myfile:
for s in data_test:
myfile.write(s)
myfile.write('\n')