-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdiseq.tex
567 lines (442 loc) · 19.6 KB
/
diseq.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
\chapter{Techniques I: Disequality Constraints}\label{diseqchapter}
In this chapter we naively translate a Scheme program to miniKanren,
and observe that the miniKanren relation exhibits undesirable
behavior. This behavior is due to our inability to express negation
in core miniKanren. We improve our miniKanren relation through the use of
disequality constraints, which can express a limited form of negation.
This chapter is organized as follows. In
section~\ref{translaterember} we translate the Scheme function
\mbox{\scheme|rember|} into the miniKanren relation \mbox{\scheme|rembero|}.
In section~\ref{remberotrouble} we observe that
\mbox{\scheme|rembero|} produces unexpected answers that do not
correspond to answers produced by \mbox{\scheme|rember|}. In
section~\ref{reconsiderrember} we show that the unexpected answers are
due to our failure to translate implicit tests in the
\mbox{\scheme|rember|} function. Section~\ref{diseqsection}
introduces disequality constraints, which allow us to express a
limited form of negation. In section~\ref{fixingrembero} we fix our
definition of \mbox{\scheme|rembero|} by adding a disequality
constraint, thereby eliminating the unexpected answers. Finally in
section~\ref{diseqlimits} we point out several disadvantages of
disequality constraints, and discuss when these constraints should be
used.
\section{Translating {\rembersymbol} into miniKanren}\label{translaterember}
We begin by naively translating the \scheme|rember| function into
miniKanren. \mbox{\scheme|rember|} takes two arguments: a symbol \scheme|x| and a
list of symbols \scheme|ls|, and removes the first occurrence of
\scheme|x| from \scheme|ls|.
\wspace
\noindent\mbox{\scheme|(rember 'b '(a b c b d)) => |}\mbox{\schemeresult|`(a c b d)|}
\wspace
\noindent\mbox{\scheme|(rember 'd '(a b c)) => |}\mbox{\schemeresult|`(a b c)|}
%\wspace
\newpage
Here is \mbox{\scheme|rember|}
\schemedisplayspace
\begin{schemedisplay}
(define rember
(lambda (x ls)
(cond
((null? ls) '())
((eq? (car ls) x) (cdr ls))
(else (cons (car ls) (rember x (cdr ls)))))))
\end{schemedisplay}
To translate \mbox{\scheme|rember|} into the miniKanren relation
\mbox{\scheme|rembero|} we add a third argument \mbox{\scheme|out|},
change \mbox{\scheme|cond|} to \mbox{\scheme|conde|}, and replace uses
of \mbox{\scheme|null?|}, \mbox{\scheme|eq?|}, \mbox{\scheme|cons|},
\mbox{\scheme|car|}, and \mbox{\scheme|cdr|} with calls to
\mbox{\scheme|==|}. We also unnest the recursive call, using a
temporary variable \mbox{\scheme|res|} to hold the ``output'' value of
the recursive call.
\schemedisplayspace
\begin{schemedisplay}
(define rembero
(lambda (x ls out)
(conde
((== '() ls) (== '() out))
((exist (a d)
(== `(,a . ,d) ls)
(== a x)
(== d out)))
((exist (a d res)
(== `(,a . ,d) ls)
(== `(,a . ,res) out)
(rembero x d res))))))
\end{schemedisplay}
\section{The Trouble with {\remberosymbol}}\label{remberotrouble}
For simple tests, it may seem that \mbox{\scheme|rembero|} works as
expected, mimicking the behavior of \mbox{\scheme|rember|}.
\wspace
\noindent\mbox{\scheme|(run1 (q) (rembero 'b '(a b c b d) q)) => |} \mbox{\schemeresult|`((a c b d))|}
\wspace
\noindent\mbox{\scheme|(run1 (q) (rembero 'd '(a b c) q)) => |} \mbox{\schemeresult|`((a b c))|}
\wspace
\noindent However, we notice a problem if we replace the \mbox{\scheme|run1|}
with \mbox{\scheme|run*|}.
\wspace
\noindent\mbox{\scheme|(run* (q) (rembero 'b '(a b c b d) q)) => |} \mbox{\schemeresult|`((a c b d) (a b c d) (a b c b d))|}
\wspace
\noindent Now there are multiple answers. The first answer is expected, but in
the second answer \mbox{\scheme|rembero|} removes the second
occurrence of \mbox{\scheme|`b|} rather than the first occurrence. The
last answer is even worse---\mbox{\scheme|rembero|} does not remove
either \mbox{\scheme|`b|}, as is evidenced by the \mbox{\scheme|run|}
expression
\wspace
\noindent\mbox{\scheme|(run* (q) (rembero 'b '(b) '(b))) => |} \mbox{\schemeresult|`(_.0)|}
\section{Reconsidering {\rembersymbol}}\label{reconsiderrember}
Where did we go wrong? Is our miniKanren translation not faithful to
the original Scheme program?
Not quite. The problem is that \mbox{\scheme|cond|} tries its clauses
in order, stopping at the first clause whose test evaluates to a true
value, while \mbox{\scheme|conde|} tries every possible clause. But
isn't there only one \mbox{\scheme|cond|} clause that matches any
given values of \mbox{\scheme|x|} and \mbox{\scheme|ls|}? Actually,
no.
Let us examine the definition of \mbox{\scheme|rember|} once again.
\schemedisplayspace
\begin{schemedisplay}
(define rember
(lambda (x ls)
(cond
((null? ls) '())
((eq? (car ls) x) (cdr ls))
(else (cons (car ls) (rember x (cdr ls)))))))
\end{schemedisplay}
\noindent Consider the call \mbox{\scheme|(rember 'a '(a b c))|}.
Clearly the \mbox{\scheme|null?|} test keeps the first clause from
returning an answer, while the \mbox{\scheme|eq?|} test allows the
second clause to produce an answer. But the test of the final clause,
the ``always-true'' \mbox{\scheme|else|} keyword,
is equivalent to the trivial \mbox{\scheme|#t|} test.
\schemedisplayspace
\begin{schemedisplay}
(define rember
(lambda (x ls)
(cond
((null? ls) '())
((eq? (car ls) x) (cdr ls))
(#t (cons (car ls) (rember x (cdr ls)))))))
\end{schemedisplay}
\noindent If it were not for the second clause, the third clause would produce
an answer for the call \mbox{\scheme|(rember 'a '(a b c))|}. In fact,
if we swap the last two clauses
\schemedisplayspace
\begin{schemedisplay}
(define rember
(lambda (x ls)
(cond
((null? ls) '())
(#t (cons (car ls) (rember x (cdr ls))))
((eq? (car ls) x) (cdr ls)))))
\end{schemedisplay}
\noindent the call \mbox{\scheme|(rember 'a '(a b c))|} returns
\mbox{\scheme|`(a b c)|} rather than \mbox{\scheme|`(b c)|}.
What does the \mbox{\scheme|else|} test really mean in the original
definition of \scheme|rember|? It means that the tests in all the above
clauses must evaluate to \mbox{\scheme|#f|}. Similar reasoning holds
for the \mbox{\scheme|eq?|} test of the second clause---the test
implies that the \mbox{\scheme|null?|} test in the first clause
returned \mbox{\scheme|#f|}. We can therefore redefine
\mbox{\scheme|rember|} to make the implicit tests explicit.
\newpage
%\schemedisplayspace
\begin{schemedisplay}
(define rember
(lambda (x ls)
(cond
((null? ls) '())
((and (not (null? ls)) (eq? (car ls) x))
(cdr ls))
((and (not (null? ls)) (not (eq? (car ls) x)))
(cons (car ls) (rember x (cdr ls)))))))
\end{schemedisplay}
\mbox{\scheme|rember|} now produces the same answers no matter how we
reorder the clauses; the clauses are now \emph{non-overlapping},
since only a single clause can produce an answer for any specific call
to \mbox{\scheme|rember|}\footnote{Throughout this dissertation we strive to write programs that adhere to the \emph{non-overlapping principle}, to avoid duplicate or misleading answers. Such programs are similar to the guarded command programs described in \citet{guardedcommands,disciplineprog}.}.
\schemedisplayspace
\begin{schemedisplay}
(define rember
(lambda (x ls)
(cond
((and (not (null? ls)) (not (eq? (car ls) x)))
(cons (car ls) (rember x (cdr ls))))
((and (not (null? ls)) (eq? (car ls) x))
(cdr ls))
((null? ls) '()))))
\end{schemedisplay}
\noindent Even though we have reordered the \scheme|cond| clauses,
\scheme|rember| works as expected.
\wspace
\noindent\mbox{\scheme|(rember 'a '(a b c)) => |}\mbox{\schemeresult|`(b c)|}
\section{Disequality Constraints}\label{diseqsection}
Now we can reconsider our definition of \mbox{\scheme|rembero|},
adding the equivalent of the explicit tests to make our
\mbox{\scheme|conde|} clauses non-overlapping\footnote{More than one
\mbox{\scheme|conde|} clause may succeed if \mbox{\scheme|rembero|}
is passed fresh variables. However, only one clause will succeed if
the first two arguments to \mbox{\scheme|rembero|} are fully
ground.}.
Unfortunately, we do not have a way to express negation in core
miniKanren\footnote{The impure operators \scheme|conda| and
\scheme|condu| from section~\ref{impureoperatorssection} can be used to express
``negation as failure'', as is commonly done in Prolog programs, but
we eschew this non-declarative approach.}. However, we do not need
full negation to express the test \mbox{\scheme|(not (null? ls))|},
since if \mbox{\scheme|ls|} is not null it must be a
pair\footnote{This assumes, of course, that the second argument to
\mbox{\scheme|rembero|} can be unified with a proper list. Passing
in \mbox{\scheme|5|} as the \mbox{\scheme|ls|} argument makes no
more sense for \mbox{\scheme|rembero|} than it does for
\mbox{\scheme|rember|}.}. In fact, we are already expressing the
\mbox{\scheme|(not (null? ls))|} test implicitly, through the
unification \mbox{\scheme|(== `(,a . ,d) ls)|} that appears in the
last two \mbox{\scheme|conde|} clauses.
The only remaining test is \mbox{\scheme|(not (eq? (car ls) x))|} in
the last clause. How might we express that the car of
\mbox{\scheme|ls|} is not \mbox{\scheme|x|}? We could attempt to
unify the car of \mbox{\scheme|ls|} with every symbol other than
\mbox{\scheme|x|}. Even if \mbox{\scheme|x|} were instantiated, to the
symbol \mbox{\scheme|`a|} for example, we would have to unify
\mbox{\scheme|x|} with every symbol \emph{other} than
\mbox{\scheme|`a|}, of which there are infinitely many. Clearly this
is problematic: enumerating an infinite domain can easily lead to
divergent behavior\footnote{It is possible to enumerate some infinite
domains using a finite number of cases, through the use of clever
data representation. For example, using the binary list notation
from Chapter~\ref{arithchapter} we can express that a natural number
\mbox{\scheme|x|} is not \mbox{\scheme|5|} by unifying
\mbox{\scheme|x|} with the patterns \mbox{\scheme|`()|},
\mbox{\scheme|`(1)|}, \mbox{\scheme|`(,a 1)|}, \mbox{\scheme|`(0 ,a 1)|},
\mbox{\scheme|`(1 1 1)|}, and \mbox{\scheme|`(,a ,b ,c ,d . ,rest)|}. Although this
approach avoids divergence, it requires us to know the domain and
representation of \mbox{\scheme|x|}. Furthermore, this approach may result in
duplicate answers even for programs that adhere to the
non-overlapping principle, which can be a problem even when
enumerating finite domains.}.
Compare the tests in the second and third \mbox{\scheme|rember|} clauses: \mbox{\scheme|(eq? (car ls) x)|} and \mbox{\scheme|(not (eq? (car ls) x))|}. We use \mbox{\scheme|(== a x)|} to express that
the car of \mbox{\scheme|ls|} (which is \mbox{\scheme|a|}) is equal to \mbox{\scheme|x|}. What we need is the ability
to express the \emph{disequality constraint}\footnote{As opposed to an \emph{equality constraint}, such as \mbox{\scheme|(== a x)|}. Disequality is also known as \emph{disunification}.} \mbox{\scheme|(=/= a x)|}\footnote{We may also wish to introduce an operator \mbox{\scheme|=/=-no-check|} that performs \emph{unsound} disunification, to avoid the cost of the occurs check.}, which
asserts that \mbox{\scheme|a|} and \mbox{\scheme|x|} are not equal, and can never be made equal
through unification.
Before we add a disequality constraint to \mbox{\scheme|rembero|}, let us examine some
simple uses of \mbox{\scheme|=/=|}.
In the first example, we unify \mbox{\scheme|q|} with
\mbox{\scheme|5|}, then specify that \mbox{\scheme|q|} can never be
\mbox{\scheme|5|}. As expected, the call to \mbox{\scheme|=/=|}
fails.
\wspace
\noindent\mbox{\scheme|(run* (q) (== 5 q) (=/= 5 q)) => |} \mbox{\schemeresult|`()|}
\wspace
If we swap the goals, the program behaves the same.
\wspace
\noindent\mbox{\scheme|(run* (q) (=/= 5 q) (== 5 q)) => |} \mbox{\schemeresult|`()|}
\wspace
\mbox{\scheme|=/=|} can take arbitrary expressions, as shown in the next two examples.
\wspace
\noindent\mbox{\scheme|(run* (q) (=/= (+ 2 3) 5)) => |} \mbox{\schemeresult|`()|}
\wspace
\noindent\mbox{\scheme|(run* (q) (=/= (* 2 3) 5)) => |} \mbox{\schemeresult|`(_.0)|}
\wspace
In this \mbox{\scheme|run*|} expression we assert that
\mbox{\scheme|q|} can never be \mbox{\scheme|5|} or \mbox{\scheme|6|}.
We express the latter constraint indirectly, by constraining
\mbox{\scheme|x|}.
\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (x)
(=/= 5 q)
(== x q)
(=/= 6 x))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`((_.0 : (never-equal ((_.0 . 5)) ((_.0 . 6)))))
\end{schemeresponse}
\noindent The answer includes two reified constraints indicating that the output
variable (\mbox{\scheme|q|}) can never be \mbox{\scheme|5|} or \mbox{\scheme|6|}.
\newpage
Consider this \mbox{\scheme|run*|} expression.
\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (y z)
(=/= `(,y . ,z) q))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`(_.0)
\end{schemeresponse}
\noindent It may seem that the constraint on \mbox{\scheme|q|} should
be reified. However, this constraint can only be violated if
\mbox{\scheme|q|} is unified with \mbox{\scheme|`(,y . ,z)|}. Since
\mbox{\scheme|y|} and \mbox{\scheme|z|} are not reified, the
constraint is not \emph{relevant} and is therefore not reified.
To reify a constraint, we must reify all of the variables involved in the constraint.
\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (x y z)
(=/= `(,y . ,z) x)
(== `(,x ,y ,z) q))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`(((_.0 _.1 _.2) : (never-equal ((_.0 _.1 . _.2)))))
\end{schemeresponse}
\noindent The constraint is easier to interpret if we remember that
\mbox{\scheme|`(never-equal ((_.0 _.1 . _.2)))|} is equivalent to
\mbox{\scheme|`(never-equal ((_.0 . (_.1 . _.2))))|}.
Here is a slightly more complicated example of \mbox{\scheme|=/=|}.
\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (x y z)
(== `(,y . ,z) x)
(=/= '(5 . 6) x)
(== 5 y)
(== `(,x ,y ,z) q))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`((((5 . _.0) 5 _.0) : (never-equal ((_.0 . 6)))))
\end{schemeresponse}
Here is the same program, but with \mbox{\scheme|(== 6 y)|} instead of \mbox{\scheme|(== 5 y)|}.
\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (x y z)
(== `(,y . ,z) x)
(=/= '(5 . 6) x)
(== 6 y)
(== `(,x ,y ,z) q))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`(((6 . _.0) 6 _.0))
\end{schemeresponse}
\noindent Since \mbox{\scheme|y|} cannot be \mbox{\scheme|5|}, \mbox{\scheme|(=/= '(5 . 6) x)|} cannot be violated and is
therefore discarded.
We end this section with a final example, to demonstrate how to interpret more complicated reified constraints.
\newpage
%\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (x y z)
(=/= 5 x)
(=/= 6 x)
(=/= `(,y 1) `(2 ,z))
(== `(,x ,y ,z) q))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`(((_.0 _.1 _.2) : (never-equal ((_.1 . 2) (_.2 . 1)) ((_.0 . 6)) ((_.0 . 5)))))
\end{schemeresponse}
\noindent The constraints \mbox{\scheme|`((_.0 . 6))|} and
\mbox{\scheme|`((_.0 . 5))|} are independent of each other, and
indicate that \mbox{\scheme|x|} can never be \mbox{\scheme|5|} or
\mbox{\scheme|6|}. However, \mbox{\scheme|`((_.1 . 2) (_.2 . 1))|}
represents a \emph{single} constraint, indicating that
\mbox{\scheme|y|} cannot be \mbox{\scheme|2|} if \mbox{\scheme|z|} is
\mbox{\scheme|1|}\footnote{Reifying constraints in a friendly manner
is non-trivial, as we will see in Chapter~\ref{diseqimplchapter}.}.
\section{Fixing {\remberosymbol}}\label{fixingrembero}
\enlargethispage{2em}
Now that we understand \mbox{\scheme|=/=|}, and how to interpret reified constraints,
we are ready to add the disequality constraint \mbox{\scheme|(=/= a x)|} to the last
clause of \mbox{\scheme|rembero|}.
\schemedisplayspace
\begin{schemedisplay}
(define rembero
(lambda (x ls out)
(conde
((== '() ls) (== '() out))
((exist (a d)
(== `(,a . ,d) ls)
(== a x)
(== d out)))
((exist (a d res)
(== `(,a . ,d) ls)
(=/= a x)
(== `(,a . ,res) out)
(rembero x d res))))))
\end{schemedisplay}
If we re-run the programs from section~\ref{remberotrouble} we see
that \mbox{\scheme|rembero|}'s behavior is consistent with that of \mbox{\scheme|rember|}.
\wspace
\noindent\mbox{\scheme|(run* (q) (rembero 'b '(a b c b d) q)) => |} \mbox{\schemeresult|`((a c b d))|}
\wspace
\noindent\mbox{\scheme|(run* (q) (rembero 'b '(b) '(b))) => |} \mbox{\schemeresult|`()|}
\wspace
Of course, \mbox{\scheme|rembero|} is more flexible than \mbox{\scheme|rember|}.
\schemedisplayspace
\begin{schemedisplay}
(run* (q)
(exist (x out)
(rembero x '(a b c) out)
(== `(,x ,out) q))) =>
\end{schemedisplay}
\nspace
\begin{schemeresponse}
`((a (b c))
(b (a c))
(c (a b))
((_.0 (a b c)) : (never-equal ((_.0 . c)) ((_.0 . b)) ((_.0 . a)))))
\end{schemeresponse}
The final answer indicates that removing a symbol \mbox{\scheme|x|}
from the list \mbox{\scheme|`(a b c)|} results in the original list,
provided that \mbox{\scheme|x|} is not \mbox{\scheme|`a|},
\mbox{\scheme|`b|}, or \mbox{\scheme|`c|}.
\section{Limitations of Disequality Constraints}\label{diseqlimits}
Disequality constraints add expressive power to core
miniKanren\footnote{It seems that disequality constraints were present
in a very early version of Prolog~\cite{birthofprolog}, although
they were apparently removed after several years. Prolog
II~\cite{prologtenfigs} reintroduced disequality constraints, which
are now standard in most Prolog systems.}, allowing us to express a
limited form of negation. However, disequality constraints have
several limitations and disadvantages.
First, the \mbox{\scheme|=/=|} operator can only express that two
terms are never the same. This is much more limited than the ability
to express full negation. For example, consider the test
\mbox{\scheme|(and (not (null? ls)) (not (eq? (car ls) x)))|} from the
version of \mbox{\scheme|rember|} in section~\ref{reconsiderrember}.
By de Morgan's law, this test is logically equivalent to
\mbox{\scheme|(not (or (null? ls) (eq? (car ls) x)))|}. We can use
disequality constraints to express the first version of the test, but
not the second.
Answers containing reified disequality constraints can be more
difficult to interpret than answers without constraints. Also, it is
not always obvious why a constraint was \emph{not} reified (whether it
was not relevant or could not be violated).
Disequality constraints also complicate the implementation of the
unifier, and especially the reifier. Disequality constraints can also
be expensive, since every constraint must be checked after each
successful unification.
Because of these disadvantages, it is preferable to use
\mbox{\scheme|==|} rather than \mbox{\scheme|=/=|} whenever practical.
For example, it is better to express the test \mbox{\scheme|(not (null? ls))|}
as \mbox{\scheme|(== `(,a . ,d) ls)|} rather than as
\mbox{\scheme|(=/= '() ls)|}.
Still, disequality constraints add expressive power to core miniKanren, and are
generally preferable to enumerating infinite (or even finite) domains.
% [membero example]
% [rembero (Scheme -> mk translation)
% duplicate answers
% simplest example of CLP
% implicit negation in cond lines
% Dijkstra guard
% must be able to swap cond clauses in Scheme
% tagging (for application expressions in lambda calculus, for example)]
% [surpriseo]
% [an arithmetic example---some number is not 5]
% can represent infinitely many terms using a single constraint---useful
% in avoiding divergence
% only relevant constraints are printed
% pairs
% constraint simplification
% [look at test programs from =/= test cases]
% [all-different]