-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathident_duffing.m
154 lines (128 loc) · 6.47 KB
/
ident_duffing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
%{
Article: Identification of Dynamic Systems with Interval Arithmetic
download: https://www.researchgate.net/publication/319056862_Identification_of_Dynamic_Systems_with_Interval_Arithmetic
Uso: perform the identification of a duffing circuit using interval arithmetic
see also:
1) More in depth studies can be found in the Marcia Peixoto's thesis:
https://ufsj.edu.br/portal2-repositorio/File/ppgel/188-2018-12-17-DissertacaoMarciaPeixoto.pdf
2) Routines of the above thesis
https://ufsj.edu.br/gcom/peixoto2018.php
Other m-files required: intlab toolbox
Subfunctions: none
Authors: Márcia Lucian da Costa Peixoto, Marco Túlio R. Matos, Wilson Rocha {Lacerda Junior} and Samir Angelo Milani Martins
and Erivelton Geraldo Nepomuceno
Website: http://www.ufsj.edu.br/gcom
Please send suggestions for improvement of the above code
to Wilson Rocha at this email address: wilsonrljr@outlook.com
References:
-----------
@InProceedings{PMJ+2017,
author = {Peixoto, M{\'{a}}rcia L. C. and Matos, Marco T. R. and J{\'{u}}nior, Wilson R. Lacerda and Martins, Samir A. M. and Nepomuceno, Erivelton G.},
title = {{Identification of Dynamic Systems with Interval Arithmetic}},
booktitle = {XIII Simp{\'{o}}sio Brasileiro de Automa{\c{c}}{\~{a}}o Inteligente},
year = {2017},
pages = {1--6},
address = {Porto Alegre},
abstract = {This paper aims to identify three electrical systems: a series RLC circuit, a motor/generator coupled system, and the Duffing-Ueda oscillator. In order to obtain the system's models was used the error reduction ratio and the Akaike information criterion. Our approach to handle the numerical errors was the interval arithmetic by means of the resolution of the least squares estimation. The routines was implemented in Intlab, a Matlab toolbox devoted to arithmetic interval. Finally, the interval RMSE was calculated to verify the quality of the obtained models. The applied methodology was satisfactory, since the obtained intervals encompass the system's data and allow to demonstrate how the numerical errors affect the answers.},
annote = {Lacerda Junior, W. R., Martins, S. A. M. and Nepomuceno, E. G. (2016), "Influence of Sample Rate and Discretization Methods in the Parameter Identification of Systems with Hysteresis", Journal of Applied Nonlinear Dynamics. Rodrigues Junior H. M., Peixoto, M. L. C, Nepomuceno, E. G. and Martins, S. A. M. (2016), "Using Different Interval Extensions to Increase the Accuracy of the Exact Solution on Recursive Functions", Discontinuity, Nonlinearity, and Complexity. Silva, M. R., Nepomuceno, E. G., Amaral, G. F. V. and Martins, S. A. M. (2016), " Exploiting the rounding mode of floating-point in the simulation of Chua's circuit'. Discontinuity, Nonlinearity, and Complexity.},
archiveprefix = {arXiv},
arxivid = {1708.03214},
eprint = {1708.03214},
file = {:D$backslash$:/User/Google Drive/mendeley/pdfs/Peixoto et al. - 2017 - Identification of Dynamic Systems with Interval Arithmetic.pdf},
}
------------- BEGIN CODE --------------
%}
clear; clc; close all;
intvalinit('displayinfsup');
format long
load duffing.dat;
y=duffing(1:1:end);
y=decimate(y,5);
yid = y(1:end/2);
yv = y(end/2+1:end);
for k = 7:length(yid)
psin(k-6,:)= [yid(k-1), yid(k-2), yid(k-3), yid(k-4), yid(k-5), yid(k-6), ...
yid(k-6)*yid(k-1)^2, yid(k-3)^3, yid(k-1)^3,yid(k-5)^3, yid(k-6)^3, ...
yid(k-4)^3, yid(k-2)^3, yid(k-1)*yid(k-2)^2, yid(k-5)*yid(k-1)^2,...
yid(k-3)*yid(k-2)*yid(k-1), yid(k-4)*yid(k-2)*yid(k-1),...
yid(k-6)*yid(k-2)*yid(k-1)];
psi(k-6,:) = [intval(yid(k-1)), intval(yid(k-2)), intval(yid(k-3)), intval(yid(k-4)), ...
intval(yid(k-5)), intval(yid(k-6)), intval(yid(k-6)*yid(k-1)^2), ...
intval(yid(k-3)^3),intval(yid(k-1)^3),intval(yid(k-5)^3),...
intval(yid(k-6)^3),intval(yid(k-4)^3), intval(yid(k-2)^3),...
intval(yid(k-1)*yid(k-2)^2),intval(yid(k-5)*yid(k-1)^2),...
intval(yid(k-3)*yid(k-2)*yid(k-1)), intval(yid(k-4)*yid(k-2)*yid(k-1)),...
intval(yid(k-6)*yid(k-2)*yid(k-1))];
end
t = 7;
yMQ = yid(t:length(yid));
for i=1
teta(:,i) =inv(psi'*psi)*psi'*yMQ'; % Regressores Intervalares
tetan(:,i)=inv(psin'*psin)*psin'*yMQ'; % Regressores Nominais
%xi = yMQ' - psi*teta(:,1); % Resíduos
end
%% Validação
for k = 7:length(yv)
psiv(k-6,:) = [yv(k-1), yv(k-2), yv(k-3), yv(k-4), yv(k-5), yv(k-6), yv(k-6)*yv(k-1)^2,...
yv(k-3)^3, yv(k-1)^3, yv(k-5)^3, yv(k-6)^3, yv(k-4)^3, yv(k-2)^3, ...
yv(k-1)*yv(k-2)^2, yv(k-5)*yv(k-1)^2, yv(k-3)*yv(k-2)*yv(k-1),...
yv(k-4)*yv(k-2)*yv(k-1), yv(k-6)*yv(k-2)*yv(k-1)];
end
k = 7:length(yv);
yvMQ = yv(7:length(yv));
m=psiv*teta;
f=psiv*tetan;
figure()
plot(k(500:700),m(500:700)','b')
hold on
plot(k(500:700),yvMQ(500:700),'k','LineWidth',1)
hold on
plot(k(500:700),f(500:700),'--r','LineWidth',1)
axis([510,700 , -4, 4]);
box off
set(gca,'FontSize',14,'Fontname','Times New Roman')
xlabel('$k$', 'Interpreter','LaTex','Fontsize',16)
ylabel('y(k)', 'Interpreter','LaTex','Fontsize',16)
axes('position',[.65 .175 .25 .25])
box on
indexOfInterest = (k>560) & (k<570);
plot(k(indexOfInterest),m(indexOfInterest)')
hold on
plot(k(indexOfInterest),yvMQ(indexOfInterest),'k')
hold on
plot(k(indexOfInterest),f(indexOfInterest),'--r')
axis tight
xl = get(gca,'YTickLabel');
new_xl = strrep(xl(:),'.',',');
set(gca,'YTickLabel',new_xl)
%% RMSE
r=psiv*teta; % dados
r1=r(1:length(yvMQ))';
media=mean(yvMQ);
RMSEi= sqrt(sum((yvMQ-r1).^2))/sqrt((sum((yvMQ-media).^2)));
m=psiv*tetan; % dados
m1=m(1:length(yvMQ))';
media=mean(yvMQ);
RMSEn= sqrt(sum((yvMQ-m1).^2))/sqrt((sum((yvMQ-media).^2)))
%% Validação por simulação livre nominal
g(1)=infsup(yv(1),yv(1));
g(2)=infsup(yv(2),yv(2));
g(3)=infsup(yv(3),yv(3));
g(4)=infsup(yv(4),yv(4));
g(5)=infsup(yv(5),yv(5));
g(6)=infsup(yv(6),yv(6));
h(1)=infsup(yv(1),yv(1));
h(2)=infsup(yv(2),yv(2));
h(3)=infsup(yv(3),yv(3));
h(4)=infsup(yv(4),yv(4));
h(5)=infsup(yv(5),yv(5));
h(6)=infsup(yv(6),yv(6));
for k=7:600
%Intervalar
h(k) = teta(1)*h(k-1)+teta(2)*h(k-2) + teta(3)*h(k-3)+ teta(4)*h(k-4)+ teta(5)*h(k-5)+...
teta(6)*h(k-6)+teta(7)*h(k-6)*h(k-1)*h(k-1)+teta(8)*h(k-3)^3+teta(9)*h(k-1)^3+...
teta(10)*h(k-5)^3+teta(11)*h(k-6)^3+ teta(12)*h(k-4)^3+...
teta(13)*h(k-2)*h(k-2)*h(k-2)+teta(14)*h(k-2)*h(k-2)*(h(k-1))+ ...
teta(15)*h(k-5)*h(k-1)^2 +teta(16)*h(k-3)*h(k-2)*h(k-1)+ ...
teta(17)*h(k-4)*h(k-2)*h(k-1) +teta(18)*h(k-6)*h(k-2)*h(k-1);
end