-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
260 lines (214 loc) · 9.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
import torch
import pickle
from model import DLightGCL
from utils import metrics, scipy_sparse_mat_to_torch_sparse_tensor
import pandas as pd
from parser import args
from tqdm import tqdm
import time
import torch.utils.data as data
from utils import TrnData
# device = 'cuda:' + args.cuda
device = 'cuda'
# hyperparameters
d = args.d
l = args.gnn_layer
temp = args.temp
batch_user = args.batch
epoch_no = args.epoch
max_samp = 40
lambda_1 = args.lambda1
lambda_2 = args.lambda2
dropout = args.dropout
lr = args.lr
decay = args.decay
svd_q = args.q
#for denoising the graph, if beta is larger, more "low-user-item-similarity edges" will be dropped
beta = args.beta
#if "True" then there will be denoise module before each layer
denoise = args.denoise
#the weight that cross-layer contrastive loss takes in the contrastive loss
cl_crossLayer_weight = args.cl_crossLayer_weight
#if "True" then there will be cross-layer contrastive loss added.
cl_crossLayer = args.cl_crossLayer
#if eps larger, the noise will have a larger amount
eps = args.eps
#if "True" then there will be noises added to embedding.
add_noise_to_emb = args.add_noise_to_emb
print(f"""cl_crossLayer = {cl_crossLayer}, cl_crossLayer_weight = {cl_crossLayer_weight}\ndenoise = {denoise}, beta={beta}\nadd_noise_to_emb = {add_noise_to_emb}, eps={eps}""")
# load data
path = 'data/' + args.data + '/'
f = open(path+'trnMat.pkl','rb')
train = pickle.load(f)
train_csr = (train!=0).astype(np.float32)
f = open(path+'tstMat.pkl','rb')
test = pickle.load(f)
print('Data loaded.')
print('user_num:',train.shape[0],'item_num:',train.shape[1],'lambda_1:',lambda_1,'lambda_2:',lambda_2,'temp:',temp,'q:',svd_q)
epoch_user = min(train.shape[0], 30000)
#generating the adj matrix
train = train.tocoo()
# print(train)
original_train_data = TrnData(train)
original_train_loader = data.DataLoader(original_train_data, batch_size=args.inter_batch, shuffle=True, num_workers=0)
adj_mat = scipy_sparse_mat_to_torch_sparse_tensor(train)
adj_mat = adj_mat.coalesce().cuda(torch.device(device))
# normalizing the adj matrix
print("Adj matrix generated")
rowD = np.array(train.sum(1)).squeeze()
colD = np.array(train.sum(0)).squeeze()
# print("rowD",rowD.shape, "colD",colD.shape)#rowD (29601,) colD (24734,)
# This way of normalizing adjacency matrix is slow. See normalize_adj_mat() in model.py for a faster version in Pytorch
for i in range(len(train.data)):
train.data[i] = train.data[i] / pow(rowD[train.row[i]]*colD[train.col[i]], 0.5)
# print(len(train.data))#Yelp 1069128 interactions
# construct data loader
# train = train.tocoo()
train_data = TrnData(train)
train_loader = data.DataLoader(train_data, batch_size=args.inter_batch, shuffle=True, num_workers=0)
adj_norm = scipy_sparse_mat_to_torch_sparse_tensor(train)
adj_norm = adj_norm.coalesce().cuda(torch.device(device))
print('Adj matrix normalized.')
# perform svd reconstruction
adj = scipy_sparse_mat_to_torch_sparse_tensor(train).coalesce().cuda(torch.device(device))
print('Doing SVD...')
svd_u,s,svd_v = torch.svd_lowrank(adj, q=svd_q)
u_mul_s = svd_u @ (torch.diag(s))
v_mul_s = svd_v @ (torch.diag(s))
del s
print('SVD done.')
# process test set
test_labels = [[] for i in range(test.shape[0])]
for i in range(len(test.data)):
row = test.row[i]
col = test.col[i]
test_labels[row].append(col)
print('Test data processed.')
loss_list = []
loss_r_list = []
loss_s_list = []
recall_20_x = []
recall_20_y = []
ndcg_20_y = []
recall_40_y = []
ndcg_40_y = []
model = DLightGCL(adj_norm.shape[0], adj_norm.shape[1], d, u_mul_s, v_mul_s, svd_u.T, svd_v.T, train_csr, adj_mat, adj_norm, l, temp, lambda_1, lambda_2, dropout, batch_user, beta,denoise, cl_crossLayer,cl_crossLayer_weight, add_noise_to_emb, eps,device)
#model.load_state_dict(torch.load('saved_model.pt'))
model.cuda(torch.device(device))
optimizer = torch.optim.Adam(model.parameters(),weight_decay=0,lr=lr)
#optimizer.load_state_dict(torch.load('saved_optim.pt'))
current_lr = lr
for epoch in range(epoch_no):
if (epoch+1)%50 == 0:
torch.save(model.state_dict(),'saved_model/saved_model_epoch_'+str(epoch)+'.pt')
torch.save(optimizer.state_dict(),'saved_model/saved_optim_epoch_'+str(epoch)+'.pt')
epoch_loss = 0
epoch_loss_r = 0
epoch_loss_s = 0
train_loader.dataset.neg_sampling()
for i, batch in enumerate(tqdm(train_loader)):
uids, pos, neg = batch #user id, positive and negative item ids
uids = uids.long().cuda(torch.device(device))
pos = pos.long().cuda(torch.device(device))
neg = neg.long().cuda(torch.device(device))
iids = torch.concat([pos, neg], dim=0)
# feed
optimizer.zero_grad()
loss, loss_r, loss_s= model(uids, iids, pos, neg)
loss.backward()
optimizer.step()
#print('batch',batch)
epoch_loss += loss.cpu().item()
epoch_loss_r += loss_r.cpu().item()
epoch_loss_s += loss_s.cpu().item()
torch.cuda.empty_cache()
#print(i, len(train_loader), end='\r')
batch_no = len(train_loader)
epoch_loss = epoch_loss/batch_no
epoch_loss_r = epoch_loss_r/batch_no
epoch_loss_s = epoch_loss_s/batch_no
loss_list.append(epoch_loss)
loss_r_list.append(epoch_loss_r)
loss_s_list.append(epoch_loss_s)
print('Epoch:',epoch,'Loss:',epoch_loss,'Loss_r:',epoch_loss_r,'Loss_s:',epoch_loss_s)
model.first_epoch=False
if epoch % 3 == 0: # test every 10 epochs
test_uids = np.array([i for i in range(adj_norm.shape[0])])
batch_no = int(np.ceil(len(test_uids)/batch_user))
all_recall_20 = 0
all_ndcg_20 = 0
all_recall_40 = 0
all_ndcg_40 = 0
for batch in tqdm(range(batch_no)):
start = batch*batch_user
end = min((batch+1)*batch_user,len(test_uids))
test_uids_input = torch.LongTensor(test_uids[start:end]).cuda(torch.device(device))
predictions = model(test_uids_input,None,None,None,test=True)
predictions = np.array(predictions.cpu())
#top@20
recall_20, ndcg_20 = metrics(test_uids[start:end],predictions,20,test_labels)
#top@40
recall_40, ndcg_40 = metrics(test_uids[start:end],predictions,40,test_labels)
all_recall_20+=recall_20
all_ndcg_20+=ndcg_20
all_recall_40+=recall_40
all_ndcg_40+=ndcg_40
#print('batch',batch,'recall@20',recall_20,'ndcg@20',ndcg_20,'recall@40',recall_40,'ndcg@40',ndcg_40)
print('-------------------------------------------')
print('Test of epoch',epoch,':','Recall@20:',all_recall_20/batch_no,'Ndcg@20:',all_ndcg_20/batch_no,'Recall@40:',all_recall_40/batch_no,'Ndcg@40:',all_ndcg_40/batch_no)
recall_20_x.append(epoch)
recall_20_y.append(all_recall_20/batch_no)
ndcg_20_y.append(all_ndcg_20/batch_no)
recall_40_y.append(all_recall_40/batch_no)
ndcg_40_y.append(all_ndcg_40/batch_no)
# final test
test_uids = np.array([i for i in range(adj_norm.shape[0])])
batch_no = int(np.ceil(len(test_uids)/batch_user))
all_recall_20 = 0
all_ndcg_20 = 0
all_recall_40 = 0
all_ndcg_40 = 0
for batch in range(batch_no):
start = batch*batch_user
end = min((batch+1)*batch_user,len(test_uids))
test_uids_input = torch.LongTensor(test_uids[start:end]).cuda(torch.device(device))
predictions = model(test_uids_input,None,None,None,test=True)
predictions = np.array(predictions.cpu())
#top@20
recall_20, ndcg_20 = metrics(test_uids[start:end],predictions,20,test_labels)
#top@40
recall_40, ndcg_40 = metrics(test_uids[start:end],predictions,40,test_labels)
all_recall_20+=recall_20
all_ndcg_20+=ndcg_20
all_recall_40+=recall_40
all_ndcg_40+=ndcg_40
#print('batch',batch,'recall@20',recall_20,'ndcg@20',ndcg_20,'recall@40',recall_40,'ndcg@40',ndcg_40)
print('-------------------------------------------')
print('Final test:','Recall@20:',all_recall_20/batch_no,'Ndcg@20:',all_ndcg_20/batch_no,'Recall@40:',all_recall_40/batch_no,'Ndcg@40:',all_ndcg_40/batch_no)
recall_20_x.append('Final')
recall_20_y.append(all_recall_20/batch_no)
ndcg_20_y.append(all_ndcg_20/batch_no)
recall_40_y.append(all_recall_40/batch_no)
ndcg_40_y.append(all_ndcg_40/batch_no)
metric = pd.DataFrame({
'epoch':recall_20_x,
'recall@20':recall_20_y,
'ndcg@20':ndcg_20_y,
'recall@40':recall_40_y,
'ndcg@40':ndcg_40_y
})
current_t = time.gmtime()
str_denoise = ""
str_rand_noise = ""
str_cl = ""
if(args.denoise=="True"):
str_denoise = "_Denoised"
if(args.add_noise_to_emb=="True"):
str_rand_noise = "_EmbNoiseAdded"
if(args.cl_crossLayer=="True"):
str_cl = "_LossCrossLayer"
str_all = "("+str_denoise + "_beta=" + str(beta) + str_rand_noise +"_eps="+str(eps) + str_cl+"_weight=" + str(cl_crossLayer_weight) + ")"
metric.to_csv('log/'+args.data + str_all + '_'+time.strftime('%Y-%m-%d-%H',current_t)+'.csv')
torch.save(model.state_dict(),'saved_model/saved_model_'+args.data+ str_all +'_'+time.strftime('%Y-%m-%d-%H',current_t)+'.pt')
torch.save(optimizer.state_dict(),'saved_model/saved_optim_'+args.data + str_all +'_'+time.strftime('%Y-%m-%d-%H',current_t)+'.pt')