-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathCFO_estimation.m
65 lines (62 loc) · 2.63 KB
/
CFO_estimation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% CFO_estimation.m
% Time-domain CP based method and Frequency-domain (Moose/Classen) methods
% 时域基于CP的方法和频域的Moose/Classen方法
% MIMO-OFDM Wireless Communications with MATLAB㈢ Yong Soo Cho, Jaekwon Kim, Won Young Yang and Chung G. Kang
% 2010 John Wiley & Sons (Asia) Pte Ltd
% http://www.wiley.com//legacy/wileychi/cho/
clear, clf
CFO = 0.15;
Nfft=128; % FFT size|FFT大小
Nbps=2; M=2^Nbps; % Number of bits per (modulated) symbol
Es=1; % 信号能量
A=sqrt(3/2/(M-1)*Es); % Signal energy and QAM normalization factor|QAM归一化因子
N=Nfft; Ng=Nfft/4; Nofdm=Nfft+Ng; Nsym=3;
h=complex(randn,randn)/sqrt(2);
%h=[1 zeros(1,5)];
% channel(h,0);
%Transmit signal|发射信号
x=[];
for m=1:Nsym
msgint=randint(1,N,M);
if i<=2,
Xp = add_pilot(zeros(1,Nfft),Nfft,4); Xf=Xp; % add_pilot|加导频
else %Xf= QAM(msgint((i-1)*N+1:i*N),Nbps); % constellation mapping. average power=1
mod_object = modem.qammod('M',M, 'SymbolOrder','gray'); % M阶格雷码QAM调制器
Xf = A*modulate(mod_object,msgint);
end
xt = ifft(Xf,Nfft); % IFFT
x_sym = add_CP(xt,Ng);
x= [x x_sym];
end
%channel
%y=channel(x_syms);
y=x; % No channel effect|没有信道影响
%Signal power calculation
sig_pow= y*y'/length(y); % Signal power calculation|计算信号功率
SNRdBs= 0:3:30;
MaxIter = 100;
for i=1:length(SNRdBs)
SNRdB = SNRdBs(i);
MSE_CFO_CP = 0; MSE_CFO_Moose = 0; MSE_CFO_Classen = 0;
rand('seed',1); randn('seed',1); % Initialize seed for random number generator|初始化生成随机数的种子
y_CFO= add_CFO(y,CFO,Nfft); % Add CFO|加CFO
for iter=1:MaxIter
%y_aw=add_AWGN(y_CFO,sig_pow,SNRdB,'SNR',Nbps); % AWGN added, signal power=1
y_aw = awgn(y_CFO,SNRdB,'measured'); % AWGN added, signal power=1|加AWGN
Est_CFO_CP = CFO_CP(y_aw,Nfft,Ng); % CP-based |时域基于CP的CFO估计
MSE_CFO_CP = MSE_CFO_CP + (Est_CFO_CP-CFO)^2;
Est_CFO_Moose = CFO_Moose(y_aw,Nfft); % Moose (based on two consecutive preambles)|基于两个连续前导
MSE_CFO_Moose = MSE_CFO_Moose + (Est_CFO_Moose-CFO)^2;
Est_CFO_Classen = CFO_Classen(y_aw,Nfft,Ng,Xp); % Classen (Pilot-based)|基于导频
MSE_CFO_Classen = MSE_CFO_Classen + (Est_CFO_Classen-CFO)^2;
end % the end of for (iter) loop
MSE_CP(i)=MSE_CFO_CP/MaxIter;
MSE_Moose(i)=MSE_CFO_Moose/MaxIter;
MSE_Classen(i)=MSE_CFO_Classen/MaxIter;
end%ebn0 end
semilogy(SNRdBs, MSE_CP,'-+'), grid on, hold on
semilogy(SNRdBs, MSE_Moose,'-x'), semilogy(SNRdBs, MSE_Classen,'-*')
xlabel('SNR[dB]'), ylabel('MSE'); title('CFO Estimation'); %axis([0 30 10e-8 10e-2])
% str=sprintf('CFO = %1.2f',CFO);
legend('CP-based technique','Moose (Preamble-based)','Classen (Pilot-based)');
% legend(str);