-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
358 lines (292 loc) · 12.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import cv2
import random
import numpy as np
from scipy.optimize import linear_sum_assignment
import torch
import torchvision
from transformers import top_k_top_p_filtering
from torchmetrics.functional.classification import binary_jaccard_index, binary_accuracy
from config import CFG
def seed_everything(seed=1234):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def save_checkpoint(state, folder="logs/checkpoint/run1", filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
if not os.path.exists(folder):
os.makedirs(folder)
torch.save(state, os.path.join(folder, filename))
def load_checkpoint(checkpoint, model, optimizer, scheduler):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
return checkpoint["epochs_run"]
def generate_square_subsequent_mask(sz):
mask = (
torch.triu(torch.ones((sz, sz), device=CFG.DEVICE)) == 1
).transpose(0, 1)
mask = mask.float().masked_fill(mask==0, float('-inf')).masked_fill(mask==1, float(0.0))
return mask
def create_mask(tgt, pad_idx):
"""
tgt shape: (N, L)
"""
tgt_seq_len = tgt.size(1)
tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
tgt_padding_mask = (tgt == pad_idx)
return tgt_mask, tgt_padding_mask
class AverageMeter:
def __init__(self, name="Metric"):
self.name = name
self.reset()
def reset(self):
self.avg, self.sum, self.count = [0]*3
def update(self, val, count=1):
self.count += count
self.sum += val * count
self.avg = self.sum / self.count
def __repr__(self) -> str:
text = f"{self.name}: {self.avg:.4f}"
return text
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def scores_to_permutations(scores):
"""
Input a batched array of scores and returns the hungarian optimized
permutation matrices.
"""
B, N, N = scores.shape
scores = scores.detach().cpu().numpy()
perm = np.zeros_like(scores)
for b in range(B):
r, c = linear_sum_assignment(-scores[b])
perm[b,r,c] = 1
return torch.tensor(perm)
# TODO: add permalink to polyworld repo
def permutations_to_polygons(perm, graph, out='torch'):
B, N, N = perm.shape
device = perm.device
def bubble_merge(poly):
s = 0
P = len(poly)
while s < P:
head = poly[s][-1]
t = s+1
while t < P:
tail = poly[t][0]
if head == tail:
poly[s] = poly[s] + poly[t][1:]
del poly[t]
poly = bubble_merge(poly)
P = len(poly)
t += 1
s += 1
return poly
diag = torch.logical_not(perm[:,range(N),range(N)])
batch = []
for b in range(B):
b_perm = perm[b]
b_graph = graph[b]
b_diag = diag[b]
idx = torch.arange(N, device=perm.device)[b_diag]
if idx.shape[0] > 0:
# If there are vertices in the batch
b_perm = b_perm[idx,:]
b_graph = b_graph[idx,:]
b_perm = b_perm[:,idx]
first = torch.arange(idx.shape[0]).unsqueeze(1).to(device=device)
second = torch.argmax(b_perm, dim=1).unsqueeze(1)
polygons_idx = torch.cat((first, second), dim=1).tolist()
polygons_idx = bubble_merge(polygons_idx)
batch_poly = []
for p_idx in polygons_idx:
if out == 'torch':
batch_poly.append(b_graph[p_idx,:])
elif out == 'numpy':
batch_poly.append(b_graph[p_idx,:].cpu().numpy())
elif out == 'list':
g = b_graph[p_idx,:] * 300 / 320
g[:,0] = -g[:,0]
g = torch.fliplr(g)
batch_poly.append(g.tolist())
elif out == 'coco':
g = b_graph[p_idx,:]# * CFG.IMG_SIZE / CFG.INPUT_WIDTH
g = torch.fliplr(g)
batch_poly.append(g.view(-1).tolist())
elif out == 'inria-torch':
batch_poly.append(b_graph[p_idx,:])
else:
print("Indicate a valid output polygon format")
exit()
batch.append(batch_poly)
else:
# If the batch has no vertices
batch.append([])
return batch
def test_generate(model, x, tokenizer, max_len=50, top_k=0, top_p=1):
x = x.to(CFG.DEVICE)
batch_preds = torch.ones((x.size(0), 1), device=CFG.DEVICE).fill_(tokenizer.BOS_code).long()
confs = []
if top_k != 0 or top_p != 1:
sample = lambda preds: torch.softmax(preds, dim=-1).multinomial(num_samples=1).view(-1, 1)
else:
sample = lambda preds: torch.softmax(preds, dim=-1).argmax(dim=-1).view(-1, 1)
with torch.no_grad():
for i in range(max_len):
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
preds, feats = model.module.predict(x, batch_preds)
else:
preds, feats = model.predict(x, batch_preds)
preds = top_k_top_p_filtering(preds, top_k=top_k, top_p=top_p) # if top_k and top_p are set to default, this line does nothing.
if i % 2 == 0:
confs_ = torch.softmax(preds, dim=-1).sort(axis=-1, descending=True)[0][:, 0].cpu()
confs.append(confs_)
preds = sample(preds)
batch_preds = torch.cat([batch_preds, preds], dim=1)
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
perm_preds = model.module.scorenet1(feats) + torch.transpose(model.module.scorenet2(feats), 1, 2)
else:
perm_preds = model.scorenet1(feats) + torch.transpose(model.scorenet2(feats), 1, 2)
perm_preds = scores_to_permutations(perm_preds)
return batch_preds.cpu(), confs, perm_preds
def postprocess(batch_preds, batch_confs, tokenizer):
EOS_idxs = (batch_preds == tokenizer.EOS_code).float().argmax(dim=-1)
## sanity check
invalid_idxs = ((EOS_idxs - 1) % 2 != 0).nonzero().view(-1)
EOS_idxs[invalid_idxs] = 0
all_coords = []
all_confs = []
for i, EOS_idx in enumerate(EOS_idxs.tolist()):
if EOS_idx == 0:
all_coords.append(None)
all_confs.append(None)
continue
coords = tokenizer.decode(batch_preds[i, :EOS_idx+1])
confs = [round(batch_confs[j][i].item(), 3) for j in range(len(coords))]
all_coords.append(coords)
all_confs.append(confs)
return all_coords, all_confs
def save_single_predictions_as_images(
loader, model, tokenizer, epoch, writer, folder="saved_outputs/", device="cuda"
):
print(f"=> Saving val predictions...")
if not os.path.exists(folder):
print(f"==> Creating output subdirectory...")
os.makedirs(folder)
model.eval()
all_coords = []
all_confs = []
with torch.no_grad():
loader_iterator = iter(loader)
idx, (x, y_mask, y_corner_mask, y, y_perm) = 0, next(loader_iterator)
batch_preds, batch_confs, perm_preds = test_generate(model, x, tokenizer, max_len=CFG.generation_steps, top_k=0, top_p=1)
vertex_coords, confs = postprocess(batch_preds, batch_confs, tokenizer)
all_coords.extend(vertex_coords)
all_confs.extend(confs)
coords = []
for i in range(len(all_coords)):
if all_coords[i] is not None:
coord = torch.from_numpy(all_coords[i])
else:
coord = torch.tensor([])
padd = torch.ones((CFG.N_VERTICES - len(coord), 2)).fill_(tokenizer.PAD_code)
coord = torch.cat((coord, padd), dim=0)
coords.append(coord)
batch_polygons = permutations_to_polygons(perm_preds, coords, out='torch') # list of polygon coordinate tensors
B, C, H, W = x.shape
# Write predicted vertices as mask to disk.
vertex_mask = np.zeros((B, 1, H, W))
for b in range(len(all_coords)):
if all_coords[b] is not None:
print(f"Vertices found!")
for i in range(len(all_coords[b])):
coord = all_coords[b][i]
cx, cy = coord
cv2.circle(vertex_mask[b, 0], (int(cy), int(cx)), 0, 255, -1)
vertex_mask = torch.from_numpy(vertex_mask)
if not os.path.exists(os.path.join(folder, 'corners_mask')):
os.makedirs(os.path.join(folder, 'corners_mask'))
vertex_pred_vis = torch.zeros_like(x)
for b in range(B):
vertex_pred_vis[b] = torchvision.utils.draw_segmentation_masks(
(x[b]*255).to(dtype=torch.uint8),
torch.zeros_like(x[b, 0]).bool()
)
vertex_pred_vis = vertex_pred_vis.cpu().numpy().astype(np.uint8)
for b in range(len(all_coords)):
if all_coords[b] is not None:
for i in range(len(all_coords[b])):
coord = all_coords[b][i]
cx, cy = coord
cv2.circle(vertex_pred_vis[b, 0], (int(cy), int(cx)), 3, 255, -1)
vertex_pred_vis = torch.from_numpy(vertex_pred_vis)
torchvision.utils.save_image(
vertex_pred_vis.float()/255, f"{folder}/corners_mask/corners_mask_{b}_{epoch}.png"
)
# Write predicted polygons as mask to disk.
polygons = np.zeros((B, 1, H, W))
for b in range(B):
for c in range(len(batch_polygons[b])):
poly = batch_polygons[b][c]
poly = poly[poly[:, 0] != tokenizer.PAD_code]
cnt = np.flip(np.int32(poly.cpu()), 1)
if len(cnt) > 0:
cv2.fillPoly(polygons[b, 0], pts=[cnt], color=1.)
polygons = torch.from_numpy(polygons)
if not os.path.exists(os.path.join(folder, 'pred_polygons')):
os.makedirs(os.path.join(folder, 'pred_polygons'))
poly_out = torch.zeros_like(x)
for b in range(B):
poly_out[b] = torchvision.utils.draw_segmentation_masks(
(x[b]*255).to(dtype=torch.uint8),
polygons[b, 0].bool()
)
poly_out = poly_out.cpu().numpy().astype(np.uint8)
for b in range(len(all_coords)):
if all_coords[b] is not None:
for i in range(len(all_coords[b])):
coord = all_coords[b][i]
cx, cy = coord
cv2.circle(poly_out[b, 0], (int(cy), int(cx)), 2, 255, -1)
poly_out = torch.from_numpy(poly_out)
torchvision.utils.save_image(
poly_out.float()/255, f"{folder}/pred_polygons/polygons_{idx}_{epoch}.png"
)
batch_miou = binary_jaccard_index(polygons, y_mask)
batch_biou = binary_jaccard_index(polygons, y_mask, ignore_index=0)
batch_macc = binary_accuracy(polygons, y_mask)
batch_bacc = binary_accuracy(polygons, y_mask, ignore_index=0)
writer.add_scalar('Val_Metrics/Mean_IoU', batch_miou, epoch)
writer.add_scalar('Val_Metrics/Building_IoU', batch_biou, epoch)
writer.add_scalar('Val_Metrics/Mean_Accuracy', batch_macc, epoch)
writer.add_scalar('Val_Metrics/Building_Accuracy', batch_bacc, epoch)
metrics_dict = {
"miou": batch_miou,
"biou": batch_biou,
"macc": batch_macc,
"bacc": batch_bacc
}
torchvision.utils.save_image(x, f"{folder}/image_{idx}.png")
ymask_out = torch.zeros_like(x)
for b in range(B):
ymask_out[b] = torchvision.utils.draw_segmentation_masks(
(x[b]*255).to(dtype=torch.uint8),
y_mask[b, 0].bool()
)
ymask_out = ymask_out.cpu().numpy().astype(np.uint8)
gt_corner_coords, _ = postprocess(y, batch_confs, tokenizer)
for b in range(B):
for corner in gt_corner_coords[b]:
cx, cy = corner
cv2.circle(ymask_out[b, 0], (int(cy), int(cx)), 3, 255, -1)
ymask_out = torch.from_numpy(ymask_out)
torchvision.utils.save_image(ymask_out/255., f"{folder}/gt_mask_{idx}.png")
torchvision.utils.save_image(y_corner_mask*255, f"{folder}/gt_corners_{idx}.png")
torchvision.utils.save_image(y_perm[:, None, :, :]*255, f"{folder}/gt_perm_matrix_{idx}.png")
return metrics_dict