-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.cpp
689 lines (577 loc) · 31.1 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#include <string>
#include <fstream>
#include <iostream>
#include <functional>
#define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 1
#include <vulkan/vulkan.hpp>
#include <GLFW/glfw3.h>
#define TINYOBJLOADER_IMPLEMENTATION
#include <tiny_obj_loader.h>
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
constexpr int WIDTH = 1024;
constexpr int HEIGHT = 1024;
struct Vertex {
float position[3];
};
struct Face {
float diffuse[3];
float emission[3];
};
void loadFromFile(std::vector<Vertex>& vertices, std::vector<uint32_t>& indices, std::vector<Face>& faces) {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string warn, err;
if (!tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, "../assets/CornellBox-Original.obj", "../assets")) {
throw std::runtime_error(warn + err);
}
for (const auto& shape : shapes) {
for (const auto& index : shape.mesh.indices) {
Vertex vertex{};
vertex.position[0] = attrib.vertices[3 * index.vertex_index + 0];
vertex.position[1] = -attrib.vertices[3 * index.vertex_index + 1];
vertex.position[2] = attrib.vertices[3 * index.vertex_index + 2];
vertices.push_back(vertex);
indices.push_back(static_cast<uint32_t>(indices.size()));
}
for (const auto& matIndex : shape.mesh.material_ids) {
Face face;
face.diffuse[0] = materials[matIndex].diffuse[0];
face.diffuse[1] = materials[matIndex].diffuse[1];
face.diffuse[2] = materials[matIndex].diffuse[2];
face.emission[0] = materials[matIndex].emission[0];
face.emission[1] = materials[matIndex].emission[1];
face.emission[2] = materials[matIndex].emission[2];
faces.push_back(face);
}
}
}
std::vector<char> readFile(const std::string& filename) {
std::ifstream file(filename, std::ios::ate | std::ios::binary);
if (!file.is_open()) {
throw std::runtime_error("failed to open file!");
}
size_t fileSize = file.tellg();
std::vector<char> buffer(fileSize);
file.seekg(0);
file.read(buffer.data(), fileSize);
file.close();
return buffer;
}
struct Context {
Context() {
// Create window
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan Pathtracing", nullptr, nullptr);
// Prepase extensions and layers
uint32_t glfwExtensionCount = 0;
const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
std::vector extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
std::vector layers{"VK_LAYER_KHRONOS_validation"};
auto vkGetInstanceProcAddr = dl.getProcAddress<PFN_vkGetInstanceProcAddr>("vkGetInstanceProcAddr");
VULKAN_HPP_DEFAULT_DISPATCHER.init(vkGetInstanceProcAddr);
// Create instance
vk::ApplicationInfo appInfo;
appInfo.setApiVersion(VK_API_VERSION_1_3);
vk::InstanceCreateInfo instanceInfo;
instanceInfo.setPApplicationInfo(&appInfo);
instanceInfo.setPEnabledLayerNames(layers);
instanceInfo.setPEnabledExtensionNames(extensions);
instance = vk::createInstanceUnique(instanceInfo);
VULKAN_HPP_DEFAULT_DISPATCHER.init(*instance);
// Pick first gpu
physicalDevice = instance->enumeratePhysicalDevices().front();
// Create debug messenger
vk::DebugUtilsMessengerCreateInfoEXT messengerInfo;
messengerInfo.setMessageSeverity(vk::DebugUtilsMessageSeverityFlagBitsEXT::eError);
messengerInfo.setMessageType(vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation);
messengerInfo.setPfnUserCallback(&debugUtilsMessengerCallback);
messenger = instance->createDebugUtilsMessengerEXTUnique(messengerInfo);
// Create surface
VkSurfaceKHR _surface;
VkResult res = glfwCreateWindowSurface(VkInstance(*instance), window, nullptr, &_surface);
if (res != VK_SUCCESS) {
throw std::runtime_error("failed to create window surface!");
}
surface = vk::UniqueSurfaceKHR(vk::SurfaceKHR(_surface), {*instance});
// Find queue family
std::vector queueFamilies = physicalDevice.getQueueFamilyProperties();
for (int i = 0; i < queueFamilies.size(); i++) {
auto supportCompute = queueFamilies[i].queueFlags & vk::QueueFlagBits::eCompute;
auto supportPresent = physicalDevice.getSurfaceSupportKHR(i, *surface);
if (supportCompute && supportPresent) {
queueFamilyIndex = i;
}
}
// Create device
const float queuePriority = 1.0f;
vk::DeviceQueueCreateInfo queueCreateInfo;
queueCreateInfo.setQueueFamilyIndex(queueFamilyIndex);
queueCreateInfo.setQueuePriorities(queuePriority);
const std::vector deviceExtensions{
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME,
VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME,
VK_KHR_MAINTENANCE3_EXTENSION_NAME,
VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME,
VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME,
VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME,
VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME,
VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME,
};
if (!checkDeviceExtensionSupport(deviceExtensions)) {
throw std::runtime_error("Some required extensions are not supported");
}
vk::DeviceCreateInfo deviceInfo;
deviceInfo.setQueueCreateInfos(queueCreateInfo);
deviceInfo.setPEnabledExtensionNames(deviceExtensions);
vk::PhysicalDeviceBufferDeviceAddressFeatures bufferDeviceAddressFeatures{true};
vk::PhysicalDeviceRayTracingPipelineFeaturesKHR rayTracingPipelineFeatures{true};
vk::PhysicalDeviceAccelerationStructureFeaturesKHR accelerationStructureFeatures{true};
vk::StructureChain createInfoChain{
deviceInfo,
bufferDeviceAddressFeatures,
rayTracingPipelineFeatures,
accelerationStructureFeatures,
};
device = physicalDevice.createDeviceUnique(createInfoChain.get<vk::DeviceCreateInfo>());
VULKAN_HPP_DEFAULT_DISPATCHER.init(*device);
queue = device->getQueue(queueFamilyIndex, 0);
// Create command pool
vk::CommandPoolCreateInfo commandPoolInfo;
commandPoolInfo.setFlags(vk::CommandPoolCreateFlagBits::eResetCommandBuffer);
commandPoolInfo.setQueueFamilyIndex(queueFamilyIndex);
commandPool = device->createCommandPoolUnique(commandPoolInfo);
// Create descriptor pool
std::vector<vk::DescriptorPoolSize> poolSizes{
{vk::DescriptorType::eAccelerationStructureKHR, 1},
{vk::DescriptorType::eStorageImage, 1},
{vk::DescriptorType::eStorageBuffer, 3},
};
vk::DescriptorPoolCreateInfo descPoolInfo;
descPoolInfo.setPoolSizes(poolSizes);
descPoolInfo.setMaxSets(1);
descPoolInfo.setFlags(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet);
descPool = device->createDescriptorPoolUnique(descPoolInfo);
}
bool checkDeviceExtensionSupport(const std::vector<const char*>& requiredExtensions) const {
std::vector<vk::ExtensionProperties> availableExtensions = physicalDevice.enumerateDeviceExtensionProperties();
std::vector<std::string> requiredExtensionNames(requiredExtensions.begin(), requiredExtensions.end());
for (const auto& extension : availableExtensions) {
requiredExtensionNames.erase(std::remove(requiredExtensionNames.begin(), requiredExtensionNames.end(), extension.extensionName),
requiredExtensionNames.end());
}
if (requiredExtensionNames.empty()) {
std::cout << "All required extensions are supported by the device." << std::endl;
return true;
} else {
std::cout << "The following required extensions are not supported by the device:" << std::endl;
for (const auto& name : requiredExtensionNames) {
std::cout << "\t" << name << std::endl;
}
return false;
}
}
uint32_t findMemoryType(uint32_t typeFilter, vk::MemoryPropertyFlags properties) const {
vk::PhysicalDeviceMemoryProperties memProperties = physicalDevice.getMemoryProperties();
for (uint32_t i = 0; i != memProperties.memoryTypeCount; ++i) {
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error("failed to find suitable memory type");
}
void oneTimeSubmit(const std::function<void(vk::CommandBuffer)>& func) const {
vk::CommandBufferAllocateInfo commandBufferInfo;
commandBufferInfo.setCommandPool(*commandPool);
commandBufferInfo.setCommandBufferCount(1);
vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(commandBufferInfo).front());
commandBuffer->begin({vk::CommandBufferUsageFlagBits::eOneTimeSubmit});
func(*commandBuffer);
commandBuffer->end();
vk::SubmitInfo submitInfo;
submitInfo.setCommandBuffers(*commandBuffer);
queue.submit(submitInfo);
queue.waitIdle();
}
vk::UniqueDescriptorSet allocateDescSet(vk::DescriptorSetLayout descSetLayout) {
vk::DescriptorSetAllocateInfo descSetInfo;
descSetInfo.setDescriptorPool(*descPool);
descSetInfo.setSetLayouts(descSetLayout);
return std::move(device->allocateDescriptorSetsUnique(descSetInfo).front());
}
static VKAPI_ATTR VkBool32 VKAPI_CALL debugUtilsMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
VkDebugUtilsMessengerCallbackDataEXT const* pCallbackData,
void* pUserData) {
std::cerr << pCallbackData->pMessage << std::endl;
return VK_FALSE;
}
GLFWwindow* window;
vk::DynamicLoader dl;
vk::UniqueInstance instance;
vk::UniqueDebugUtilsMessengerEXT messenger;
vk::UniqueSurfaceKHR surface;
vk::UniqueDevice device;
vk::PhysicalDevice physicalDevice;
uint32_t queueFamilyIndex;
vk::Queue queue;
vk::UniqueCommandPool commandPool;
vk::UniqueDescriptorPool descPool;
};
struct Buffer {
enum class Type {
Scratch,
AccelInput,
AccelStorage,
ShaderBindingTable,
};
Buffer() = default;
Buffer(const Context& context, Type type, vk::DeviceSize size, const void* data = nullptr) {
vk::BufferUsageFlags usage;
vk::MemoryPropertyFlags memoryProps;
using Usage = vk::BufferUsageFlagBits;
using Memory = vk::MemoryPropertyFlagBits;
if (type == Type::AccelInput) {
usage = Usage::eAccelerationStructureBuildInputReadOnlyKHR | Usage::eStorageBuffer | Usage::eShaderDeviceAddress;
memoryProps = Memory::eHostVisible | Memory::eHostCoherent;
} else if (type == Type::Scratch) {
usage = Usage::eStorageBuffer | Usage::eShaderDeviceAddress;
memoryProps = Memory::eDeviceLocal;
} else if (type == Type::AccelStorage) {
usage = Usage::eAccelerationStructureStorageKHR | Usage::eShaderDeviceAddress;
memoryProps = Memory::eDeviceLocal;
} else if (type == Type::ShaderBindingTable) {
usage = Usage::eShaderBindingTableKHR | Usage::eShaderDeviceAddress;
memoryProps = Memory::eHostVisible | Memory::eHostCoherent;
}
buffer = context.device->createBufferUnique({{}, size, usage});
// Allocate memory
vk::MemoryRequirements requirements = context.device->getBufferMemoryRequirements(*buffer);
uint32_t memoryTypeIndex = context.findMemoryType(requirements.memoryTypeBits, memoryProps);
vk::MemoryAllocateFlagsInfo flagsInfo{vk::MemoryAllocateFlagBits::eDeviceAddress};
vk::MemoryAllocateInfo memoryInfo;
memoryInfo.setAllocationSize(requirements.size);
memoryInfo.setMemoryTypeIndex(memoryTypeIndex);
memoryInfo.setPNext(&flagsInfo);
memory = context.device->allocateMemoryUnique(memoryInfo);
context.device->bindBufferMemory(*buffer, *memory, 0);
// Get device address
vk::BufferDeviceAddressInfoKHR bufferDeviceAI{*buffer};
deviceAddress = context.device->getBufferAddressKHR(&bufferDeviceAI);
descBufferInfo.setBuffer(*buffer);
descBufferInfo.setOffset(0);
descBufferInfo.setRange(size);
if (data) {
void* mapped = context.device->mapMemory(*memory, 0, size);
memcpy(mapped, data, size);
context.device->unmapMemory(*memory);
}
}
vk::UniqueBuffer buffer;
vk::UniqueDeviceMemory memory;
vk::DescriptorBufferInfo descBufferInfo;
uint64_t deviceAddress = 0;
};
struct Image {
Image() = default;
Image(const Context& context, vk::Extent2D extent, vk::Format format, vk::ImageUsageFlags usage) {
// Create image
vk::ImageCreateInfo imageInfo;
imageInfo.setImageType(vk::ImageType::e2D);
imageInfo.setExtent({extent.width, extent.height, 1});
imageInfo.setMipLevels(1);
imageInfo.setArrayLayers(1);
imageInfo.setFormat(format);
imageInfo.setUsage(usage);
image = context.device->createImageUnique(imageInfo);
// Allocate memory
vk::MemoryRequirements requirements = context.device->getImageMemoryRequirements(*image);
uint32_t memoryTypeIndex = context.findMemoryType(requirements.memoryTypeBits, vk::MemoryPropertyFlagBits::eDeviceLocal);
vk::MemoryAllocateInfo memoryInfo;
memoryInfo.setAllocationSize(requirements.size);
memoryInfo.setMemoryTypeIndex(memoryTypeIndex);
memory = context.device->allocateMemoryUnique(memoryInfo);
// Bind memory and image
context.device->bindImageMemory(*image, *memory, 0);
// Create image view
vk::ImageViewCreateInfo imageViewInfo;
imageViewInfo.setImage(*image);
imageViewInfo.setViewType(vk::ImageViewType::e2D);
imageViewInfo.setFormat(format);
imageViewInfo.setSubresourceRange({vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1});
view = context.device->createImageViewUnique(imageViewInfo);
// Set image info
descImageInfo.setImageView(*view);
descImageInfo.setImageLayout(vk::ImageLayout::eGeneral);
context.oneTimeSubmit([&](vk::CommandBuffer commandBuffer) { //
setImageLayout(commandBuffer, *image, vk::ImageLayout::eUndefined, vk::ImageLayout::eGeneral);
});
}
static vk::AccessFlags toAccessFlags(vk::ImageLayout layout) {
switch (layout) {
case vk::ImageLayout::eTransferSrcOptimal:
return vk::AccessFlagBits::eTransferRead;
case vk::ImageLayout::eTransferDstOptimal:
return vk::AccessFlagBits::eTransferWrite;
default:
return {};
}
}
static void setImageLayout(vk::CommandBuffer commandBuffer, vk::Image image, vk::ImageLayout oldLayout, vk::ImageLayout newLayout) {
vk::ImageMemoryBarrier barrier;
barrier.setDstQueueFamilyIndex(VK_QUEUE_FAMILY_IGNORED);
barrier.setSrcQueueFamilyIndex(VK_QUEUE_FAMILY_IGNORED);
barrier.setImage(image);
barrier.setOldLayout(oldLayout);
barrier.setNewLayout(newLayout);
barrier.setSubresourceRange({vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1});
barrier.setSrcAccessMask(toAccessFlags(oldLayout));
barrier.setDstAccessMask(toAccessFlags(newLayout));
commandBuffer.pipelineBarrier(vk::PipelineStageFlagBits::eAllCommands, //
vk::PipelineStageFlagBits::eAllCommands, //
{}, {}, {}, barrier);
}
static void copyImage(vk::CommandBuffer commandBuffer, vk::Image srcImage, vk::Image dstImage) {
vk::ImageCopy copyRegion;
copyRegion.setSrcSubresource({vk::ImageAspectFlagBits::eColor, 0, 0, 1});
copyRegion.setDstSubresource({vk::ImageAspectFlagBits::eColor, 0, 0, 1});
copyRegion.setExtent({WIDTH, HEIGHT, 1});
commandBuffer.copyImage(srcImage, vk::ImageLayout::eTransferSrcOptimal, dstImage, vk::ImageLayout::eTransferDstOptimal, copyRegion);
}
vk::UniqueImage image;
vk::UniqueImageView view;
vk::UniqueDeviceMemory memory;
vk::DescriptorImageInfo descImageInfo;
};
struct Accel {
Accel() = default;
Accel(const Context& context, vk::AccelerationStructureGeometryKHR geometry, uint32_t primitiveCount, vk::AccelerationStructureTypeKHR type) {
vk::AccelerationStructureBuildGeometryInfoKHR buildGeometryInfo;
buildGeometryInfo.setType(type);
buildGeometryInfo.setFlags(vk::BuildAccelerationStructureFlagBitsKHR::ePreferFastTrace);
buildGeometryInfo.setGeometries(geometry);
// Create buffer
vk::AccelerationStructureBuildSizesInfoKHR buildSizesInfo = context.device->getAccelerationStructureBuildSizesKHR( //
vk::AccelerationStructureBuildTypeKHR::eDevice, buildGeometryInfo, primitiveCount);
vk::DeviceSize size = buildSizesInfo.accelerationStructureSize;
buffer = Buffer{context, Buffer::Type::AccelStorage, size};
// Create accel
vk::AccelerationStructureCreateInfoKHR accelInfo;
accelInfo.setBuffer(*buffer.buffer);
accelInfo.setSize(size);
accelInfo.setType(type);
accel = context.device->createAccelerationStructureKHRUnique(accelInfo);
// Build
Buffer scratchBuffer{context, Buffer::Type::Scratch, buildSizesInfo.buildScratchSize};
buildGeometryInfo.setScratchData(scratchBuffer.deviceAddress);
buildGeometryInfo.setDstAccelerationStructure(*accel);
context.oneTimeSubmit([&](vk::CommandBuffer commandBuffer) { //
vk::AccelerationStructureBuildRangeInfoKHR buildRangeInfo;
buildRangeInfo.setPrimitiveCount(primitiveCount);
buildRangeInfo.setFirstVertex(0);
buildRangeInfo.setPrimitiveOffset(0);
buildRangeInfo.setTransformOffset(0);
commandBuffer.buildAccelerationStructuresKHR(buildGeometryInfo, &buildRangeInfo);
});
descAccelInfo.setAccelerationStructures(*accel);
}
Buffer buffer;
vk::UniqueAccelerationStructureKHR accel;
vk::WriteDescriptorSetAccelerationStructureKHR descAccelInfo;
};
int main() {
Context context;
vk::SwapchainCreateInfoKHR swapchainInfo;
swapchainInfo.setSurface(*context.surface);
swapchainInfo.setMinImageCount(3);
swapchainInfo.setImageFormat(vk::Format::eB8G8R8A8Unorm);
swapchainInfo.setImageColorSpace(vk::ColorSpaceKHR::eSrgbNonlinear);
swapchainInfo.setImageExtent({WIDTH, HEIGHT});
swapchainInfo.setImageArrayLayers(1);
swapchainInfo.setImageUsage(vk::ImageUsageFlagBits::eTransferDst);
swapchainInfo.setPreTransform(vk::SurfaceTransformFlagBitsKHR::eIdentity);
swapchainInfo.setPresentMode(vk::PresentModeKHR::eFifo);
swapchainInfo.setClipped(true);
swapchainInfo.setQueueFamilyIndices(context.queueFamilyIndex);
vk::UniqueSwapchainKHR swapchain = context.device->createSwapchainKHRUnique(swapchainInfo);
std::vector<vk::Image> swapchainImages = context.device->getSwapchainImagesKHR(*swapchain);
vk::CommandBufferAllocateInfo commandBufferInfo;
commandBufferInfo.setCommandPool(*context.commandPool);
commandBufferInfo.setCommandBufferCount(static_cast<uint32_t>(swapchainImages.size()));
std::vector<vk::UniqueCommandBuffer> commandBuffers = context.device->allocateCommandBuffersUnique(commandBufferInfo);
Image outputImage{context,
{WIDTH, HEIGHT},
vk::Format::eB8G8R8A8Unorm,
vk::ImageUsageFlagBits::eStorage | vk::ImageUsageFlagBits::eTransferSrc | vk::ImageUsageFlagBits::eTransferDst};
// Load mesh
std::vector<Vertex> vertices;
std::vector<uint32_t> indices;
std::vector<Face> faces;
loadFromFile(vertices, indices, faces);
Buffer vertexBuffer{context, Buffer::Type::AccelInput, sizeof(Vertex) * vertices.size(), vertices.data()};
Buffer indexBuffer{context, Buffer::Type::AccelInput, sizeof(uint32_t) * indices.size(), indices.data()};
Buffer faceBuffer{context, Buffer::Type::AccelInput, sizeof(Face) * faces.size(), faces.data()};
// Create bottom level accel struct
vk::AccelerationStructureGeometryTrianglesDataKHR triangleData;
triangleData.setVertexFormat(vk::Format::eR32G32B32Sfloat);
triangleData.setVertexData(vertexBuffer.deviceAddress);
triangleData.setVertexStride(sizeof(Vertex));
triangleData.setMaxVertex(static_cast<uint32_t>(vertices.size()));
triangleData.setIndexType(vk::IndexType::eUint32);
triangleData.setIndexData(indexBuffer.deviceAddress);
vk::AccelerationStructureGeometryKHR triangleGeometry;
triangleGeometry.setGeometryType(vk::GeometryTypeKHR::eTriangles);
triangleGeometry.setGeometry({triangleData});
triangleGeometry.setFlags(vk::GeometryFlagBitsKHR::eOpaque);
const auto primitiveCount = static_cast<uint32_t>(indices.size() / 3);
Accel bottomAccel{context, triangleGeometry, primitiveCount, vk::AccelerationStructureTypeKHR::eBottomLevel};
// Create top level accel struct
vk::TransformMatrixKHR transformMatrix = std::array{
std::array{1.0f, 0.0f, 0.0f, 0.0f},
std::array{0.0f, 1.0f, 0.0f, 0.0f},
std::array{0.0f, 0.0f, 1.0f, 0.0f},
};
vk::AccelerationStructureInstanceKHR accelInstance;
accelInstance.setTransform(transformMatrix);
accelInstance.setMask(0xFF);
accelInstance.setAccelerationStructureReference(bottomAccel.buffer.deviceAddress);
accelInstance.setFlags(vk::GeometryInstanceFlagBitsKHR::eTriangleFacingCullDisable);
Buffer instancesBuffer{context, Buffer::Type::AccelInput, sizeof(vk::AccelerationStructureInstanceKHR), &accelInstance};
vk::AccelerationStructureGeometryInstancesDataKHR instancesData;
instancesData.setArrayOfPointers(false);
instancesData.setData(instancesBuffer.deviceAddress);
vk::AccelerationStructureGeometryKHR instanceGeometry;
instanceGeometry.setGeometryType(vk::GeometryTypeKHR::eInstances);
instanceGeometry.setGeometry({instancesData});
instanceGeometry.setFlags(vk::GeometryFlagBitsKHR::eOpaque);
Accel topAccel{context, instanceGeometry, 1, vk::AccelerationStructureTypeKHR::eTopLevel};
// Load shaders
const std::vector<char> raygenCode = readFile("../shaders/raygen.rgen.spv");
const std::vector<char> missCode = readFile("../shaders/miss.rmiss.spv");
const std::vector<char> chitCode = readFile("../shaders/closesthit.rchit.spv");
std::vector<vk::UniqueShaderModule> shaderModules(3);
shaderModules[0] = context.device->createShaderModuleUnique({{}, raygenCode.size(), reinterpret_cast<const uint32_t*>(raygenCode.data())});
shaderModules[1] = context.device->createShaderModuleUnique({{}, missCode.size(), reinterpret_cast<const uint32_t*>(missCode.data())});
shaderModules[2] = context.device->createShaderModuleUnique({{}, chitCode.size(), reinterpret_cast<const uint32_t*>(chitCode.data())});
std::vector<vk::PipelineShaderStageCreateInfo> shaderStages(3);
shaderStages[0] = {{}, vk::ShaderStageFlagBits::eRaygenKHR, *shaderModules[0], "main"};
shaderStages[1] = {{}, vk::ShaderStageFlagBits::eMissKHR, *shaderModules[1], "main"};
shaderStages[2] = {{}, vk::ShaderStageFlagBits::eClosestHitKHR, *shaderModules[2], "main"};
std::vector<vk::RayTracingShaderGroupCreateInfoKHR> shaderGroups(3);
shaderGroups[0] = {vk::RayTracingShaderGroupTypeKHR::eGeneral, 0, VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
shaderGroups[1] = {vk::RayTracingShaderGroupTypeKHR::eGeneral, 1, VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
shaderGroups[2] = {vk::RayTracingShaderGroupTypeKHR::eTrianglesHitGroup, VK_SHADER_UNUSED_KHR, 2, VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
// create ray tracing pipeline
std::vector<vk::DescriptorSetLayoutBinding> bindings{
{0, vk::DescriptorType::eAccelerationStructureKHR, 1, vk::ShaderStageFlagBits::eRaygenKHR}, // Binding = 0 : TLAS
{1, vk::DescriptorType::eStorageImage, 1, vk::ShaderStageFlagBits::eRaygenKHR}, // Binding = 1 : Storage image
{2, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eClosestHitKHR}, // Binding = 2 : Vertices
{3, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eClosestHitKHR}, // Binding = 3 : Indices
{4, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eClosestHitKHR}, // Binding = 4 : Faces
};
// Create desc set layout
vk::DescriptorSetLayoutCreateInfo descSetLayoutInfo;
descSetLayoutInfo.setBindings(bindings);
vk::UniqueDescriptorSetLayout descSetLayout = context.device->createDescriptorSetLayoutUnique(descSetLayoutInfo);
// Create pipeline layout
vk::PushConstantRange pushRange;
pushRange.setOffset(0);
pushRange.setSize(sizeof(int));
pushRange.setStageFlags(vk::ShaderStageFlagBits::eRaygenKHR);
vk::PipelineLayoutCreateInfo pipelineLayoutInfo;
pipelineLayoutInfo.setSetLayouts(*descSetLayout);
pipelineLayoutInfo.setPushConstantRanges(pushRange);
vk::UniquePipelineLayout pipelineLayout = context.device->createPipelineLayoutUnique(pipelineLayoutInfo);
// Create pipeline
vk::RayTracingPipelineCreateInfoKHR rtPipelineInfo;
rtPipelineInfo.setStages(shaderStages);
rtPipelineInfo.setGroups(shaderGroups);
rtPipelineInfo.setMaxPipelineRayRecursionDepth(4);
rtPipelineInfo.setLayout(*pipelineLayout);
auto result = context.device->createRayTracingPipelineKHRUnique(nullptr, nullptr, rtPipelineInfo);
if (result.result != vk::Result::eSuccess) {
throw std::runtime_error("failed to create ray tracing pipeline.");
}
vk::UniquePipeline pipeline = std::move(result.value);
// Get ray tracing properties
auto properties = context.physicalDevice.getProperties2<vk::PhysicalDeviceProperties2, vk::PhysicalDeviceRayTracingPipelinePropertiesKHR>();
auto rtProperties = properties.get<vk::PhysicalDeviceRayTracingPipelinePropertiesKHR>();
// Calculate shader binding table (SBT) size
uint32_t handleSize = rtProperties.shaderGroupHandleSize;
uint32_t handleSizeAligned = rtProperties.shaderGroupHandleAlignment;
uint32_t groupCount = static_cast<uint32_t>(shaderGroups.size());
uint32_t sbtSize = groupCount * handleSizeAligned;
// Get shader group handles
std::vector<uint8_t> handleStorage(sbtSize);
if (context.device->getRayTracingShaderGroupHandlesKHR(*pipeline, 0, groupCount, sbtSize, handleStorage.data()) != vk::Result::eSuccess) {
throw std::runtime_error("failed to get ray tracing shader group handles.");
}
// Create SBT
Buffer raygenSBT{context, Buffer::Type::ShaderBindingTable, handleSize, handleStorage.data() + 0 * handleSizeAligned};
Buffer missSBT{context, Buffer::Type::ShaderBindingTable, handleSize, handleStorage.data() + 1 * handleSizeAligned};
Buffer hitSBT{context, Buffer::Type::ShaderBindingTable, handleSize, handleStorage.data() + 2 * handleSizeAligned};
uint32_t stride = rtProperties.shaderGroupHandleAlignment;
uint32_t size = rtProperties.shaderGroupHandleAlignment;
vk::StridedDeviceAddressRegionKHR raygenRegion{raygenSBT.deviceAddress, stride, size};
vk::StridedDeviceAddressRegionKHR missRegion{missSBT.deviceAddress, stride, size};
vk::StridedDeviceAddressRegionKHR hitRegion{hitSBT.deviceAddress, stride, size};
// Create desc set
vk::UniqueDescriptorSet descSet = context.allocateDescSet(*descSetLayout);
std::vector<vk::WriteDescriptorSet> writes(bindings.size());
for (int i = 0; i < bindings.size(); i++) {
writes[i].setDstSet(*descSet);
writes[i].setDescriptorType(bindings[i].descriptorType);
writes[i].setDescriptorCount(bindings[i].descriptorCount);
writes[i].setDstBinding(bindings[i].binding);
}
writes[0].setPNext(&topAccel.descAccelInfo);
writes[1].setImageInfo(outputImage.descImageInfo);
writes[2].setBufferInfo(vertexBuffer.descBufferInfo);
writes[3].setBufferInfo(indexBuffer.descBufferInfo);
writes[4].setBufferInfo(faceBuffer.descBufferInfo);
context.device->updateDescriptorSets(writes, nullptr);
// Main loop
uint32_t imageIndex = 0;
int frame = 0;
vk::UniqueSemaphore imageAcquiredSemaphore = context.device->createSemaphoreUnique(vk::SemaphoreCreateInfo());
while (!glfwWindowShouldClose(context.window)) {
glfwPollEvents();
// Acquire next image
imageIndex = context.device->acquireNextImageKHR(*swapchain, UINT64_MAX, *imageAcquiredSemaphore).value;
// Record commands
vk::CommandBuffer commandBuffer = *commandBuffers[imageIndex];
commandBuffer.begin(vk::CommandBufferBeginInfo());
commandBuffer.bindPipeline(vk::PipelineBindPoint::eRayTracingKHR, *pipeline);
commandBuffer.bindDescriptorSets(vk::PipelineBindPoint::eRayTracingKHR, *pipelineLayout, 0, *descSet, nullptr);
commandBuffer.pushConstants(*pipelineLayout, vk::ShaderStageFlagBits::eRaygenKHR, 0, sizeof(int), &frame);
commandBuffer.traceRaysKHR(raygenRegion, missRegion, hitRegion, {}, WIDTH, HEIGHT, 1);
vk::Image srcImage = *outputImage.image;
vk::Image dstImage = swapchainImages[imageIndex];
Image::setImageLayout(commandBuffer, srcImage, vk::ImageLayout::eGeneral, vk::ImageLayout::eTransferSrcOptimal);
Image::setImageLayout(commandBuffer, dstImage, vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal);
Image::copyImage(commandBuffer, srcImage, dstImage);
Image::setImageLayout(commandBuffer, srcImage, vk::ImageLayout::eTransferSrcOptimal, vk::ImageLayout::eGeneral);
Image::setImageLayout(commandBuffer, dstImage, vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::ePresentSrcKHR);
commandBuffer.end();
// Submit
context.queue.submit(vk::SubmitInfo().setCommandBuffers(commandBuffer));
// Present image
vk::PresentInfoKHR presentInfo;
presentInfo.setSwapchains(*swapchain);
presentInfo.setImageIndices(imageIndex);
presentInfo.setWaitSemaphores(*imageAcquiredSemaphore);
auto result = context.queue.presentKHR(presentInfo);
if (result != vk::Result::eSuccess) {
throw std::runtime_error("failed to present.");
}
context.queue.waitIdle();
frame++;
}
context.device->waitIdle();
glfwDestroyWindow(context.window);
glfwTerminate();
}